Publikation:

Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy

Lade...
Vorschaubild

Dateien

Allerbeck_2-3sa0fzvyxs26.pdf
Allerbeck_2-3sa0fzvyxs26.pdfGröße: 2.23 MBDownloads: 16

Datum

2023

Autor:innen

Bobzien, Laric
Huberich, Lysander
Schuler, Bruno

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): SFB 1432
European Union (EU): 948243

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACS Photonics. ACS Publications. 2023, 10(11), pp. 3888-3895. eISSN 2330-4022. Available under: doi: 10.1021/acsphotonics.3c00555

Zusammenfassung

The fundamental understanding of quantum dynamics in advanced materials requires precise characterization at the limit of spatiotemporal resolution. Ultrafast scanning tunneling microscopy is a powerful tool combining the benefits of picosecond time resolution provided by single-cycle terahertz (THz) pulses and atomic spatial resolution of a scanning tunneling microscope (STM). For the selective excitation of localized electronic states, the transient field profile must be tailored to the energetic structure of the system. Here, we present an advanced THz-STM setup combining multi-MHz repetition rates, strong THz near fields, and continuous carrier-envelope phase (CEP) control of the transient waveform. In particular, we employ frustrated total internal reflection as an efficient and cost-effective method for precise CEP control of single-cycle THz pulses with >60% field transmissivity, high pointing stability, and continuous phase shifting of up to 0.75 π in the far and near field. Efficient THz generation and dispersion management enable peak THz voltages at the tip–sample junction exceeding 20 V at 1 MHz and 1 V at 41 MHz. The system comprises two distinct THz generation arms, which facilitate individual pulse shaping and amplitude modulation. This unique feature enables the flexible implementation of various THz pump–probe schemes, thereby facilitating the study of electronic and excitonic excited-state propagation in nanostructures and low-dimensional materials systems. Scalability of the repetition rate up to 41 MHz, combined with a state-of-the-art low-temperature STM, paves the way toward the investigation of dynamical processes in atomic quantum systems at their native length and time scales.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ALLERBECK, Jonas, Joel KUTTRUFF, Laric BOBZIEN, Lysander HUBERICH, Maxim V. TSAREV, Bruno SCHULER, 2023. Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy. In: ACS Photonics. ACS Publications. 2023, 10(11), pp. 3888-3895. eISSN 2330-4022. Available under: doi: 10.1021/acsphotonics.3c00555
BibTex
@article{Allerbeck2023Effic-68943,
  year={2023},
  doi={10.1021/acsphotonics.3c00555},
  title={Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy},
  number={11},
  volume={10},
  journal={ACS Photonics},
  pages={3888--3895},
  author={Allerbeck, Jonas and Kuttruff, Joel and Bobzien, Laric and Huberich, Lysander and Tsarev, Maxim V. and Schuler, Bruno}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68943">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-05T09:13:40Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schuler, Bruno</dc:creator>
    <dc:creator>Huberich, Lysander</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Schuler, Bruno</dc:contributor>
    <dc:creator>Allerbeck, Jonas</dc:creator>
    <dc:contributor>Tsarev, Maxim V.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Kuttruff, Joel</dc:creator>
    <dc:contributor>Bobzien, Laric</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68943/1/Allerbeck_2-3sa0fzvyxs26.pdf"/>
    <dc:contributor>Allerbeck, Jonas</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68943"/>
    <dc:contributor>Kuttruff, Joel</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-05T09:13:40Z</dcterms:available>
    <dc:creator>Bobzien, Laric</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:issued>2023</dcterms:issued>
    <dc:creator>Tsarev, Maxim V.</dc:creator>
    <dcterms:abstract>The fundamental understanding of quantum dynamics in advanced materials requires precise characterization at the limit of spatiotemporal resolution. Ultrafast scanning tunneling microscopy is a powerful tool combining the benefits of picosecond time resolution provided by single-cycle terahertz (THz) pulses and atomic spatial resolution of a scanning tunneling microscope (STM). For the selective excitation of localized electronic states, the transient field profile must be tailored to the energetic structure of the system. Here, we present an advanced THz-STM setup combining multi-MHz repetition rates, strong THz near fields, and continuous carrier-envelope phase (CEP) control of the transient waveform. In particular, we employ frustrated total internal reflection as an efficient and cost-effective method for precise CEP control of single-cycle THz pulses with &gt;60% field transmissivity, high pointing stability, and continuous phase shifting of up to 0.75 π in the far and near field. Efficient THz generation and dispersion management enable peak THz voltages at the tip–sample junction exceeding 20 V at 1 MHz and 1 V at 41 MHz. The system comprises two distinct THz generation arms, which facilitate individual pulse shaping and amplitude modulation. This unique feature enables the flexible implementation of various THz pump–probe schemes, thereby facilitating the study of electronic and excitonic excited-state propagation in nanostructures and low-dimensional materials systems. Scalability of the repetition rate up to 41 MHz, combined with a state-of-the-art low-temperature STM, paves the way toward the investigation of dynamical processes in atomic quantum systems at their native length and time scales.</dcterms:abstract>
    <dc:contributor>Huberich, Lysander</dc:contributor>
    <dcterms:title>Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68943/1/Allerbeck_2-3sa0fzvyxs26.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Nein
Diese Publikation teilen