Publikation: Stage-specific metabolic features of differentiating neurons : Implications for toxicant sensitivity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Developmental neurotoxicity (DNT) may be induced when chemicals disturb a key neurodevelopmental process, and many tests focus on this type of toxicity. Alternatively, DNT may occur when chemicals are cytotoxic only during a specific neurodevelopmental stage. The toxicant sensitivity is affected by the expression of toxicant targets and by resilience factors. Although cellular metabolism plays an important role, little is known how it changes during human neurogenesis, and how potential alterations affect toxicant sensitivity of mature vs. immature neurons. We used immature (d0) and mature (d6) LUHMES cells (dopaminergic human neurons) to provide initial answers to these questions. Transcriptome profiling and characterization of energy metabolism suggested a switch from predominantly glycolytic energy generation to a more pronounced contribution of the tricarboxylic acid cycle (TCA) during neuronal maturation. Therefore, we used pulsed stable isotope-resolved metabolomics (pSIRM) to determine intracellular metabolite pool sizes (concentrations), and isotopically non-stationary 13C-metabolic flux analysis (INST 13C-MFA) to calculate metabolic fluxes. We found that d0 cells mainly use glutamine to fuel the TCA. Furthermore, they rely on extracellular pyruvate to allow continuous growth. This metabolic situation does not allow for mitochondrial or glycolytic spare capacity, i.e. the ability to adapt energy generation to altered needs. Accordingly, neuronal precursor cells displayed a higher sensitivity to several mitochondrial toxicants than mature neurons differentiated from them. In summary, this study shows that precursor cells lose their glutamine dependency during differentiation while they gain flexibility of energy generation and thereby increase their resistance to low concentrations of mitochondrial toxicants.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DELP, Johannes, Simon GUTBIER, Martin CERFF, Thomas HARTUNG, Hanna BORLINGHAUS, Falk SCHREIBER, Tanja WALDMANN, Stefan KEMPA, Katharina NÖH, Marcel LEIST, 2018. Stage-specific metabolic features of differentiating neurons : Implications for toxicant sensitivity. In: Toxicology and Applied Pharmacology. 2018, 354, pp. 64-80. ISSN 0041-008X. eISSN 1096-0333. Available under: doi: 10.1016/j.taap.2017.12.013BibTex
@article{Delp2018-09Stage-41182, year={2018}, doi={10.1016/j.taap.2017.12.013}, title={Stage-specific metabolic features of differentiating neurons : Implications for toxicant sensitivity}, volume={354}, issn={0041-008X}, journal={Toxicology and Applied Pharmacology}, pages={64--80}, author={Delp, Johannes and Gutbier, Simon and Cerff, Martin and Hartung, Thomas and Borlinghaus, Hanna and Schreiber, Falk and Waldmann, Tanja and Kempa, Stefan and Nöh, Katharina and Leist, Marcel}, note={Corrigendum: https://doi.org/10.1016/j.taap.2019.04.010} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41182"> <dc:contributor>Kempa, Stefan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schreiber, Falk</dc:creator> <dc:creator>Leist, Marcel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41182"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Waldmann, Tanja</dc:contributor> <dc:creator>Waldmann, Tanja</dc:creator> <dcterms:title>Stage-specific metabolic features of differentiating neurons : Implications for toxicant sensitivity</dcterms:title> <dc:contributor>Schreiber, Falk</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Cerff, Martin</dc:creator> <dc:contributor>Leist, Marcel</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41182/1/Delp_2-5awah4cuz039.pdf"/> <dcterms:abstract xml:lang="eng">Developmental neurotoxicity (DNT) may be induced when chemicals disturb a key neurodevelopmental process, and many tests focus on this type of toxicity. Alternatively, DNT may occur when chemicals are cytotoxic only during a specific neurodevelopmental stage. The toxicant sensitivity is affected by the expression of toxicant targets and by resilience factors. Although cellular metabolism plays an important role, little is known how it changes during human neurogenesis, and how potential alterations affect toxicant sensitivity of mature vs. immature neurons. We used immature (d0) and mature (d6) LUHMES cells (dopaminergic human neurons) to provide initial answers to these questions. Transcriptome profiling and characterization of energy metabolism suggested a switch from predominantly glycolytic energy generation to a more pronounced contribution of the tricarboxylic acid cycle (TCA) during neuronal maturation. Therefore, we used pulsed stable isotope-resolved metabolomics (pSIRM) to determine intracellular metabolite pool sizes (concentrations), and isotopically non-stationary <sup>13</sup>C-metabolic flux analysis (INST <sup>13</sup>C-MFA) to calculate metabolic fluxes. We found that d0 cells mainly use glutamine to fuel the TCA. Furthermore, they rely on extracellular pyruvate to allow continuous growth. This metabolic situation does not allow for mitochondrial or glycolytic spare capacity, i.e. the ability to adapt energy generation to altered needs. Accordingly, neuronal precursor cells displayed a higher sensitivity to several mitochondrial toxicants than mature neurons differentiated from them. In summary, this study shows that precursor cells lose their glutamine dependency during differentiation while they gain flexibility of energy generation and thereby increase their resistance to low concentrations of mitochondrial toxicants.</dcterms:abstract> <dc:contributor>Gutbier, Simon</dc:contributor> <dc:creator>Hartung, Thomas</dc:creator> <dc:creator>Kempa, Stefan</dc:creator> <dc:contributor>Delp, Johannes</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-31T14:03:58Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-31T14:03:58Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Cerff, Martin</dc:contributor> <dc:creator>Delp, Johannes</dc:creator> <dc:creator>Nöh, Katharina</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Hartung, Thomas</dc:contributor> <dc:creator>Gutbier, Simon</dc:creator> <dc:language>eng</dc:language> <dc:creator>Borlinghaus, Hanna</dc:creator> <dcterms:issued>2018-09</dcterms:issued> <dc:contributor>Borlinghaus, Hanna</dc:contributor> <dc:contributor>Nöh, Katharina</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41182/1/Delp_2-5awah4cuz039.pdf"/> </rdf:Description> </rdf:RDF>