Publikation: Boosting charge collection efficiency via large-area free-standing Ag/ZnO core-shell nanowire array electrodes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Hybrid nanostructures, comprising of a metal core and a semiconductor shell layer, show great potential for a new generation of low-cost solar cells due to their unique electronic and optical properties. However, experimental results have fallen far short of the ultra-high efficiency (i.e. beyond Shockley-Queisser limit) predicted by theoretical simulations. This limits the commercial application of these materials. Here, a non-transparent organic solar cell with an array of Ag/ZnO nanowires has been experimentally fabricated to increase the internal quantum efficiency (IQE) by a factor of 2.5 compared to a planar counterpart. This result indicates a significant enhancement of charge collection efficiency due to the ultrafast Ag nanowire channels. This hybrid nanostructure can also serve as a perfect back reflector for semi-transparent solar cells, which can result in enhanced light absorption by a factor of 1.8 compared to the reference samples. The enhanced charge collection and light absorption can make these Ag/ZnO nanostructures available for the application of modern optoelectronic devices.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FENG, Yuyi, Paul KIM, Clayton A. NEMITZ, Kwang-Dae KIM, Yoonseok PARK, Karl LEO, James A. DORMAN, Jonas WEICKERT, Yongtian WANG, Lukas SCHMIDT-MENDE, 2019. Boosting charge collection efficiency via large-area free-standing Ag/ZnO core-shell nanowire array electrodes. In: Progress in Natural Science : Materials International. 2019, 29(2), pp. 124-128. ISSN 1002-0071. eISSN 1745-5391. Available under: doi: 10.1016/j.pnsc.2019.03.002BibTex
@article{Feng2019-04Boost-46299, year={2019}, doi={10.1016/j.pnsc.2019.03.002}, title={Boosting charge collection efficiency via large-area free-standing Ag/ZnO core-shell nanowire array electrodes}, number={2}, volume={29}, issn={1002-0071}, journal={Progress in Natural Science : Materials International}, pages={124--128}, author={Feng, Yuyi and Kim, Paul and Nemitz, Clayton A. and Kim, Kwang-Dae and Park, Yoonseok and Leo, Karl and Dorman, James A. and Weickert, Jonas and Wang, Yongtian and Schmidt-Mende, Lukas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46299"> <dc:creator>Leo, Karl</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46299/3/Feng_2-5h3h4bll0gd2.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Nemitz, Clayton A.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46299/3/Feng_2-5h3h4bll0gd2.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46299"/> <dc:creator>Feng, Yuyi</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Schmidt-Mende, Lukas</dc:creator> <dc:contributor>Park, Yoonseok</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dc:contributor>Kim, Kwang-Dae</dc:contributor> <dc:contributor>Weickert, Jonas</dc:contributor> <dcterms:title>Boosting charge collection efficiency via large-area free-standing Ag/ZnO core-shell nanowire array electrodes</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-10T11:27:31Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-10T11:27:31Z</dc:date> <dc:contributor>Kim, Paul</dc:contributor> <dcterms:issued>2019-04</dcterms:issued> <dc:contributor>Dorman, James A.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Park, Yoonseok</dc:creator> <dc:contributor>Leo, Karl</dc:contributor> <dc:creator>Dorman, James A.</dc:creator> <dc:contributor>Feng, Yuyi</dc:contributor> <dc:creator>Wang, Yongtian</dc:creator> <dc:contributor>Schmidt-Mende, Lukas</dc:contributor> <dcterms:abstract xml:lang="eng">Hybrid nanostructures, comprising of a metal core and a semiconductor shell layer, show great potential for a new generation of low-cost solar cells due to their unique electronic and optical properties. However, experimental results have fallen far short of the ultra-high efficiency (i.e. beyond Shockley-Queisser limit) predicted by theoretical simulations. This limits the commercial application of these materials. Here, a non-transparent organic solar cell with an array of Ag/ZnO nanowires has been experimentally fabricated to increase the internal quantum efficiency (IQE) by a factor of 2.5 compared to a planar counterpart. This result indicates a significant enhancement of charge collection efficiency due to the ultrafast Ag nanowire channels. This hybrid nanostructure can also serve as a perfect back reflector for semi-transparent solar cells, which can result in enhanced light absorption by a factor of 1.8 compared to the reference samples. The enhanced charge collection and light absorption can make these Ag/ZnO nanostructures available for the application of modern optoelectronic devices.</dcterms:abstract> <dc:creator>Kim, Paul</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dc:creator>Nemitz, Clayton A.</dc:creator> <dc:creator>Weickert, Jonas</dc:creator> <dc:contributor>Wang, Yongtian</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Kim, Kwang-Dae</dc:creator> </rdf:Description> </rdf:RDF>