Publikation:

Boosting charge collection efficiency via large-area free-standing Ag/ZnO core-shell nanowire array electrodes

Lade...
Vorschaubild

Dateien

Feng_2-5h3h4bll0gd2.pdf
Feng_2-5h3h4bll0gd2.pdfGröße: 989.69 KBDownloads: 231

Datum

2019

Autor:innen

Kim, Paul
Nemitz, Clayton A.
Park, Yoonseok
Leo, Karl
Wang, Yongtian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Progress in Natural Science : Materials International. 2019, 29(2), pp. 124-128. ISSN 1002-0071. eISSN 1745-5391. Available under: doi: 10.1016/j.pnsc.2019.03.002

Zusammenfassung

Hybrid nanostructures, comprising of a metal core and a semiconductor shell layer, show great potential for a new generation of low-cost solar cells due to their unique electronic and optical properties. However, experimental results have fallen far short of the ultra-high efficiency (i.e. beyond Shockley-Queisser limit) predicted by theoretical simulations. This limits the commercial application of these materials. Here, a non-transparent organic solar cell with an array of Ag/ZnO nanowires has been experimentally fabricated to increase the internal quantum efficiency (IQE) by a factor of 2.5 compared to a planar counterpart. This result indicates a significant enhancement of charge collection efficiency due to the ultrafast Ag nanowire channels. This hybrid nanostructure can also serve as a perfect back reflector for semi-transparent solar cells, which can result in enhanced light absorption by a factor of 1.8 compared to the reference samples. The enhanced charge collection and light absorption can make these Ag/ZnO nanostructures available for the application of modern optoelectronic devices.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Vertically aligned nanowires, Silver, Core-shell Charge collection efficiency, Light harvesting, Semi-transparent organic solar cells

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FENG, Yuyi, Paul KIM, Clayton A. NEMITZ, Kwang-Dae KIM, Yoonseok PARK, Karl LEO, James A. DORMAN, Jonas WEICKERT, Yongtian WANG, Lukas SCHMIDT-MENDE, 2019. Boosting charge collection efficiency via large-area free-standing Ag/ZnO core-shell nanowire array electrodes. In: Progress in Natural Science : Materials International. 2019, 29(2), pp. 124-128. ISSN 1002-0071. eISSN 1745-5391. Available under: doi: 10.1016/j.pnsc.2019.03.002
BibTex
@article{Feng2019-04Boost-46299,
  year={2019},
  doi={10.1016/j.pnsc.2019.03.002},
  title={Boosting charge collection efficiency via large-area free-standing Ag/ZnO core-shell nanowire array electrodes},
  number={2},
  volume={29},
  issn={1002-0071},
  journal={Progress in Natural Science : Materials International},
  pages={124--128},
  author={Feng, Yuyi and Kim, Paul and Nemitz, Clayton A. and Kim, Kwang-Dae and Park, Yoonseok and Leo, Karl and Dorman, James A. and Weickert, Jonas and Wang, Yongtian and Schmidt-Mende, Lukas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46299">
    <dc:creator>Leo, Karl</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46299/3/Feng_2-5h3h4bll0gd2.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Nemitz, Clayton A.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46299/3/Feng_2-5h3h4bll0gd2.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46299"/>
    <dc:creator>Feng, Yuyi</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Schmidt-Mende, Lukas</dc:creator>
    <dc:contributor>Park, Yoonseok</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:contributor>Kim, Kwang-Dae</dc:contributor>
    <dc:contributor>Weickert, Jonas</dc:contributor>
    <dcterms:title>Boosting charge collection efficiency via large-area free-standing Ag/ZnO core-shell nanowire array electrodes</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-10T11:27:31Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-10T11:27:31Z</dc:date>
    <dc:contributor>Kim, Paul</dc:contributor>
    <dcterms:issued>2019-04</dcterms:issued>
    <dc:contributor>Dorman, James A.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Park, Yoonseok</dc:creator>
    <dc:contributor>Leo, Karl</dc:contributor>
    <dc:creator>Dorman, James A.</dc:creator>
    <dc:contributor>Feng, Yuyi</dc:contributor>
    <dc:creator>Wang, Yongtian</dc:creator>
    <dc:contributor>Schmidt-Mende, Lukas</dc:contributor>
    <dcterms:abstract xml:lang="eng">Hybrid nanostructures, comprising of a metal core and a semiconductor shell layer, show great potential for a new generation of low-cost solar cells due to their unique electronic and optical properties. However, experimental results have fallen far short of the ultra-high efficiency (i.e. beyond Shockley-Queisser limit) predicted by theoretical simulations. This limits the commercial application of these materials. Here, a non-transparent organic solar cell with an array of Ag/ZnO nanowires has been experimentally fabricated to increase the internal quantum efficiency (IQE) by a factor of 2.5 compared to a planar counterpart. This result indicates a significant enhancement of charge collection efficiency due to the ultrafast Ag nanowire channels. This hybrid nanostructure can also serve as a perfect back reflector for semi-transparent solar cells, which can result in enhanced light absorption by a factor of 1.8 compared to the reference samples. The enhanced charge collection and light absorption can make these Ag/ZnO nanostructures available for the application of modern optoelectronic devices.</dcterms:abstract>
    <dc:creator>Kim, Paul</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:creator>Nemitz, Clayton A.</dc:creator>
    <dc:creator>Weickert, Jonas</dc:creator>
    <dc:contributor>Wang, Yongtian</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Kim, Kwang-Dae</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen