Publikation:

Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model

Lade...
Vorschaubild

Dateien

Barsoum_0-319762.pdf
Barsoum_0-319762.pdfGröße: 490.63 KBDownloads: 233

Datum

2015

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This paper compares the forecasting performance of the unrestricted mixed-frequency VAR (MF-VAR) model to the more commonly used VAR (LF-VAR) model sampled a common low-frequency. The literature so far has successfully documented the forecast gains that can be obtained from using high-frequency variables in forecasting a lower frequency variable in a univariate mixed-frequency setting. These forecast gains are usually attributed to the ability of the mixed-frequency models to nowcast. More recently, Ghysels (2014) provides an approach that allows the usage of mixed-frequency variables in a VAR framework. In this paper we assess the forecasting and nowcasting performance of the MF-VAR of Ghysels (2014), however, we do not impose any restrictions on the parameters of the models. Although the unrestricted version is more flexible, it suffers from parameter proliferation and is therefore only suitable when the difference between the low- and high-frequency variables is small (i.e. quarterly and monthly frequencies). Unlike previous work, our interest is not only limited to evaluating the out-of-sample performance in terms of point forecasts but also density forecasts. Thus, we suggest a parametric bootstrap approach as well as a Bayesian approach to compute density forecasts. Moreover, we show how the nowcasts can be obtained using both direct and iterative forecasting methods. We use both Monte Carlo simulation experiments and an empirical study for the US to compare the forecasting performance of both the MF-VAR model and the LF-VAR model. The results highlight the point and density forecasts gains that can be achieved by the MF-VAR model.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Mixed-frequency, Bayesian estimation, Bootstrapping, Density forecasts, Nowcasting

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BARSOUM, Fady, 2015. Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model
BibTex
@techreport{Barsoum2015Point-32769,
  year={2015},
  series={Working Paper Series / Department of Economics},
  title={Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model},
  number={2015-19},
  author={Barsoum, Fady}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32769">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-01T09:36:22Z</dc:date>
    <dcterms:title>Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-01T09:36:22Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Barsoum, Fady</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dc:contributor>Barsoum, Fady</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:abstract xml:lang="eng">This paper compares the forecasting performance of the unrestricted mixed-frequency VAR (MF-VAR) model to the more commonly used VAR (LF-VAR) model sampled a common low-frequency. The literature so far has successfully documented the forecast gains that can be obtained from using high-frequency variables in forecasting a lower frequency variable in a univariate mixed-frequency setting. These forecast gains are usually attributed to the ability of the mixed-frequency models to nowcast. More recently, Ghysels (2014) provides an approach that allows the usage of mixed-frequency variables in a VAR framework. In this paper we assess the forecasting and nowcasting performance of the MF-VAR of Ghysels (2014), however, we do not impose any restrictions on the parameters of the models. Although the unrestricted version is more flexible, it suffers from parameter proliferation and is therefore only suitable when the difference between the low- and high-frequency variables is small (i.e. quarterly and monthly frequencies). Unlike previous work, our interest is not only limited to evaluating the out-of-sample performance in terms of point forecasts but also density forecasts. Thus, we suggest a parametric bootstrap approach as well as a Bayesian approach to compute density forecasts. Moreover, we show how the nowcasts can be obtained using both direct and iterative forecasting methods. We use both Monte Carlo simulation experiments and an empirical study for the US to compare the forecasting performance of both the MF-VAR model and the LF-VAR model. The results highlight the point and density forecasts gains that can be achieved by the MF-VAR model.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32769"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32769/3/Barsoum_0-319762.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32769/3/Barsoum_0-319762.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen