Publikation:

Clustering by principal curve with tree structure

Lade...
Vorschaubild

Dateien

Cleju_230295.pdf
Cleju_230295.pdfGröße: 193.08 KBDownloads: 225

Datum

2005

Autor:innen

Fränti, Pasi
Wu, Xiaolin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005.. IEEE, 2005, pp. 617-620. ISBN 0-7803-9029-6. Available under: doi: 10.1109/ISSCS.2005.1511316

Zusammenfassung

Data clustering is intensively used in signal processing in tasks such as multimedia compression, segmentation and pattern matching. In this work we extend the use of principal curves in clustering to complex multidimensional datasets. The use of principal curve in clustering is limited for high complexity data. Automatic parameterization of the principal curve to assure good results for different datasets is a difficult task. We propose to use the tree structure to capture the general settlement of the data. Using this topology, regions of the dataset can be extracted, individually clustered using the principal curve and then optimally recombined. The experiments show the improvement of the new method over the principal curve based clustering and the good performance compared to other clustering methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005., Iasi, Romania
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CLEJU, Ioan, Pasi FRÄNTI, Xiaolin WU, 2005. Clustering by principal curve with tree structure. International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005.. Iasi, Romania. In: International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005.. IEEE, 2005, pp. 617-620. ISBN 0-7803-9029-6. Available under: doi: 10.1109/ISSCS.2005.1511316
BibTex
@inproceedings{Cleju2005Clust-23029,
  year={2005},
  doi={10.1109/ISSCS.2005.1511316},
  title={Clustering by principal curve with tree structure},
  isbn={0-7803-9029-6},
  publisher={IEEE},
  booktitle={International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005.},
  pages={617--620},
  author={Cleju, Ioan and Fränti, Pasi and Wu, Xiaolin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23029">
    <dcterms:bibliographicCitation>Proceedings - ISSCS 2005, International Symposium on Signals, Circuits and Systems : July 14 - 15, 2005, Iasi, Romania ; vol. 2 / organized by Faculty of Electronics and Telecommunications ... - Piscataway, NJ : IEEE Operations Center, 2005. - S. 617-620. - ISBN 0-7803-9029-6</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-25T09:06:08Z</dcterms:available>
    <dc:creator>Cleju, Ioan</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2005</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Clustering by principal curve with tree structure</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23029/1/Cleju_230295.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Wu, Xiaolin</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-25T09:06:08Z</dc:date>
    <dc:contributor>Cleju, Ioan</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23029"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23029/1/Cleju_230295.pdf"/>
    <dc:contributor>Fränti, Pasi</dc:contributor>
    <dc:creator>Fränti, Pasi</dc:creator>
    <dcterms:abstract xml:lang="eng">Data clustering is intensively used in signal processing in tasks such as multimedia compression, segmentation and pattern matching. In this work we extend the use of principal curves in clustering to complex multidimensional datasets. The use of principal curve in clustering is limited for high complexity data. Automatic parameterization of the principal curve to assure good results for different datasets is a difficult task. We propose to use the tree structure to capture the general settlement of the data. Using this topology, regions of the dataset can be extracted, individually clustered using the principal curve and then optimally recombined. The experiments show the improvement of the new method over the principal curve based clustering and the good performance compared to other clustering methods.</dcterms:abstract>
    <dc:contributor>Wu, Xiaolin</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen