Publikation: Interacting Electrons in Graphene : Fermi Velocity Renormalization and Optical Response
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting parameters (like an unknown band cutoff) but relies on a topological invariant (crystal structure function) that makes the Hartree-Fock sublattice spinor independent of the electron-electron interaction. Agreement with the experimental data is obtained assuming static self-screening including local field effects. As an application of the model, we derive an explicit expression for the optical conductivity and discuss the renormalization of the Drude weight. The optical conductivity is also obtained via precise quantum Monte Carlo calculations which compares well to our mean-field approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STAUBER, Tobias, Prakash PARIDA, Maxim TRUSHIN, Maxim V. ULYBYSHEV, Denis L. BOYDA, John SCHLIEMANN, 2017. Interacting Electrons in Graphene : Fermi Velocity Renormalization and Optical Response. In: Physical Review Letters. 2017, 118(26), 266801. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.118.266801BibTex
@article{Stauber2017-04-12T13:20:30ZInter-39576, year={2017}, doi={10.1103/PhysRevLett.118.266801}, title={Interacting Electrons in Graphene : Fermi Velocity Renormalization and Optical Response}, number={26}, volume={118}, issn={0031-9007}, journal={Physical Review Letters}, author={Stauber, Tobias and Parida, Prakash and Trushin, Maxim and Ulybyshev, Maxim V. and Boyda, Denis L. and Schliemann, John}, note={Article Number: 266801} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39576"> <dc:creator>Parida, Prakash</dc:creator> <dcterms:abstract xml:lang="eng">We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting parameters (like an unknown band cutoff) but relies on a topological invariant (crystal structure function) that makes the Hartree-Fock sublattice spinor independent of the electron-electron interaction. Agreement with the experimental data is obtained assuming static self-screening including local field effects. As an application of the model, we derive an explicit expression for the optical conductivity and discuss the renormalization of the Drude weight. The optical conductivity is also obtained via precise quantum Monte Carlo calculations which compares well to our mean-field approach.</dcterms:abstract> <dc:creator>Stauber, Tobias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:title>Interacting Electrons in Graphene : Fermi Velocity Renormalization and Optical Response</dcterms:title> <dc:creator>Schliemann, John</dc:creator> <dc:contributor>Ulybyshev, Maxim V.</dc:contributor> <dc:creator>Ulybyshev, Maxim V.</dc:creator> <dc:contributor>Trushin, Maxim</dc:contributor> <dcterms:issued>2017-04-12T13:20:30Z</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Boyda, Denis L.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39576"/> <dc:contributor>Parida, Prakash</dc:contributor> <dc:creator>Boyda, Denis L.</dc:creator> <dc:contributor>Schliemann, John</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Trushin, Maxim</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-13T12:19:30Z</dc:date> <dc:contributor>Stauber, Tobias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-13T12:19:30Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>