Publikation: Illegal Aliens or Undocumented Immigrants? : Towards the Automated Identification of Bias by Word Choice and Labeling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Media bias, i.e., slanted news coverage, can strongly impact the public perception of topics reported in the news. While the analysis of media bias has recently gained attention in computer science, the automated methods and results tend to be simple when compared to approaches and results in the social sciences, where researchers have studied media bias for decades. We propose Newsalyze, a work-in-progress prototype that imitates a manual analysis concept for media bias established in the social sciences. Newsalyze aims to find instances of bias by word choice and labeling in a set of news articles reporting on the same event. Bias by word choice and labeling (WCL) occurs when journalists use different phrases to refer to the same semantic concept, e.g., actors or actions. This way, instances of bias by WCL can induce strongly divergent emotional responses from readers, such as the terms “illegal aliens” vs. “undocumented immigrants.” We describe two critical tasks of the analysis workflow, finding and mapping such phrases, and estimating their effects on readers. For both tasks, we also present first results, which indicate the effectiveness of exploiting methods and models from the social sciences in an automated approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAMBORG, Felix, Anastasia ZHUKOVA, Bela GIPP, 2019. Illegal Aliens or Undocumented Immigrants? : Towards the Automated Identification of Bias by Word Choice and Labeling. 14th International Conference, iConference 2019. Washington, DC, USA, 31. März 2019 - 3. Apr. 2019. In: TAYLOR, Natalie Greene, ed. and others. Information in contemporary society : 14th international conference, iConference 2019, Washington, DC, USA, March 31-April 3, 2019 : proceedings. Cham: Springer, 2019, pp. 179-187. Lecture Notes in Computer Science. 11420. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-15741-8. Available under: doi: 10.1007/978-3-030-15742-5_17BibTex
@inproceedings{Hamborg2019-03-13Illeg-52099, year={2019}, doi={10.1007/978-3-030-15742-5_17}, title={Illegal Aliens or Undocumented Immigrants? : Towards the Automated Identification of Bias by Word Choice and Labeling}, number={11420}, isbn={978-3-030-15741-8}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Information in contemporary society : 14th international conference, iConference 2019, Washington, DC, USA, March 31-April 3, 2019 : proceedings}, pages={179--187}, editor={Taylor, Natalie Greene}, author={Hamborg, Felix and Zhukova, Anastasia and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52099"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Gipp, Bela</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-11T12:49:05Z</dcterms:available> <dcterms:abstract xml:lang="eng">Media bias, i.e., slanted news coverage, can strongly impact the public perception of topics reported in the news. While the analysis of media bias has recently gained attention in computer science, the automated methods and results tend to be simple when compared to approaches and results in the social sciences, where researchers have studied media bias for decades. We propose Newsalyze, a work-in-progress prototype that imitates a manual analysis concept for media bias established in the social sciences. Newsalyze aims to find instances of bias by word choice and labeling in a set of news articles reporting on the same event. Bias by word choice and labeling (WCL) occurs when journalists use different phrases to refer to the same semantic concept, e.g., actors or actions. This way, instances of bias by WCL can induce strongly divergent emotional responses from readers, such as the terms “illegal aliens” vs. “undocumented immigrants.” We describe two critical tasks of the analysis workflow, finding and mapping such phrases, and estimating their effects on readers. For both tasks, we also present first results, which indicate the effectiveness of exploiting methods and models from the social sciences in an automated approach.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-11T12:49:05Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Illegal Aliens or Undocumented Immigrants? : Towards the Automated Identification of Bias by Word Choice and Labeling</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2019-03-13</dcterms:issued> <dc:creator>Zhukova, Anastasia</dc:creator> <dc:contributor>Zhukova, Anastasia</dc:contributor> <dc:creator>Hamborg, Felix</dc:creator> <dc:contributor>Gipp, Bela</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Hamborg, Felix</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52099"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>