Publikation:

Illegal Aliens or Undocumented Immigrants? : Towards the Automated Identification of Bias by Word Choice and Labeling

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

TAYLOR, Natalie Greene, ed. and others. Information in contemporary society : 14th international conference, iConference 2019, Washington, DC, USA, March 31-April 3, 2019 : proceedings. Cham: Springer, 2019, pp. 179-187. Lecture Notes in Computer Science. 11420. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-15741-8. Available under: doi: 10.1007/978-3-030-15742-5_17

Zusammenfassung

Media bias, i.e., slanted news coverage, can strongly impact the public perception of topics reported in the news. While the analysis of media bias has recently gained attention in computer science, the automated methods and results tend to be simple when compared to approaches and results in the social sciences, where researchers have studied media bias for decades. We propose Newsalyze, a work-in-progress prototype that imitates a manual analysis concept for media bias established in the social sciences. Newsalyze aims to find instances of bias by word choice and labeling in a set of news articles reporting on the same event. Bias by word choice and labeling (WCL) occurs when journalists use different phrases to refer to the same semantic concept, e.g., actors or actions. This way, instances of bias by WCL can induce strongly divergent emotional responses from readers, such as the terms “illegal aliens” vs. “undocumented immigrants.” We describe two critical tasks of the analysis workflow, finding and mapping such phrases, and estimating their effects on readers. For both tasks, we also present first results, which indicate the effectiveness of exploiting methods and models from the social sciences in an automated approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Media bias, News slant, News bias, Content analysis, Frame analysis

Konferenz

14th International Conference, iConference 2019, 31. März 2019 - 3. Apr. 2019, Washington, DC, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAMBORG, Felix, Anastasia ZHUKOVA, Bela GIPP, 2019. Illegal Aliens or Undocumented Immigrants? : Towards the Automated Identification of Bias by Word Choice and Labeling. 14th International Conference, iConference 2019. Washington, DC, USA, 31. März 2019 - 3. Apr. 2019. In: TAYLOR, Natalie Greene, ed. and others. Information in contemporary society : 14th international conference, iConference 2019, Washington, DC, USA, March 31-April 3, 2019 : proceedings. Cham: Springer, 2019, pp. 179-187. Lecture Notes in Computer Science. 11420. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-15741-8. Available under: doi: 10.1007/978-3-030-15742-5_17
BibTex
@inproceedings{Hamborg2019-03-13Illeg-52099,
  year={2019},
  doi={10.1007/978-3-030-15742-5_17},
  title={Illegal Aliens or Undocumented Immigrants? : Towards the Automated Identification of Bias by Word Choice and Labeling},
  number={11420},
  isbn={978-3-030-15741-8},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Information in contemporary society : 14th international conference, iConference 2019, Washington, DC, USA, March 31-April 3, 2019 : proceedings},
  pages={179--187},
  editor={Taylor, Natalie Greene},
  author={Hamborg, Felix and Zhukova, Anastasia and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52099">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-11T12:49:05Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Media bias, i.e., slanted news coverage, can strongly impact the public perception of topics reported in the news. While the analysis of media bias has recently gained attention in computer science, the automated methods and results tend to be simple when compared to approaches and results in the social sciences, where researchers have studied media bias for decades. We propose Newsalyze, a work-in-progress prototype that imitates a manual analysis concept for media bias established in the social sciences. Newsalyze aims to find instances of bias by word choice and labeling in a set of news articles reporting on the same event. Bias by word choice and labeling (WCL) occurs when journalists use different phrases to refer to the same semantic concept, e.g., actors or actions. This way, instances of bias by WCL can induce strongly divergent emotional responses from readers, such as the terms “illegal aliens” vs. “undocumented immigrants.” We describe two critical tasks of the analysis workflow, finding and mapping such phrases, and estimating their effects on readers. For both tasks, we also present first results, which indicate the effectiveness of exploiting methods and models from the social sciences in an automated approach.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-11T12:49:05Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Illegal Aliens or Undocumented Immigrants? : Towards the Automated Identification of Bias by Word Choice and Labeling</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2019-03-13</dcterms:issued>
    <dc:creator>Zhukova, Anastasia</dc:creator>
    <dc:contributor>Zhukova, Anastasia</dc:contributor>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52099"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen