Publikation: Super-resolution from observations with variable zooming ratios
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Super-resolution reconstruction (SR) is a technique for estimating a high resolution (HR) image from multiple low resolution (LR) copies captured from the same scene. Most of the existing SR algorithms are based on the assumption that the scene moves parallel to the camera lens with translational or rotational motion. However, such an assumption may not be held if zooming exists when acquiring LR images. We present in this paper a new linear model to represent the relationship between the HR image and the LR images captured with arbitrary sampling lattices. Based on this model, a MAP based SR algorithm is proposed. Experimental results verify the improvements on the visual quality of our framework.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SHEN, Minmin, Ping XUE, 2010. Super-resolution from observations with variable zooming ratios. 2010 IEEE International Symposium on Circuits and Systems. Paris, 30. Mai 2010 - 2. Juni 2010. In: IEEE, , ed.. Proceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS) 2010 : Paris, France, 30 May - 2 June 2010. Piscataway, NJ: IEEE, 2010, pp. 2622-2625. ISBN 978-1-4244-5308-5. Available under: doi: 10.1109/ISCAS.2010.5537079BibTex
@inproceedings{Shen2010Super-30808, year={2010}, doi={10.1109/ISCAS.2010.5537079}, title={Super-resolution from observations with variable zooming ratios}, isbn={978-1-4244-5308-5}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={Proceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS) 2010 : Paris, France, 30 May - 2 June 2010}, pages={2622--2625}, editor={IEEE}, author={Shen, Minmin and Xue, Ping} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30808"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Xue, Ping</dc:creator> <dc:language>eng</dc:language> <dc:creator>Shen, Minmin</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30808"/> <dcterms:title>Super-resolution from observations with variable zooming ratios</dcterms:title> <dc:contributor>Shen, Minmin</dc:contributor> <dc:contributor>Xue, Ping</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-23T07:00:43Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-23T07:00:43Z</dcterms:available> <dcterms:issued>2010</dcterms:issued> <dcterms:abstract xml:lang="eng">Super-resolution reconstruction (SR) is a technique for estimating a high resolution (HR) image from multiple low resolution (LR) copies captured from the same scene. Most of the existing SR algorithms are based on the assumption that the scene moves parallel to the camera lens with translational or rotational motion. However, such an assumption may not be held if zooming exists when acquiring LR images. We present in this paper a new linear model to represent the relationship between the HR image and the LR images captured with arbitrary sampling lattices. Based on this model, a MAP based SR algorithm is proposed. Experimental results verify the improvements on the visual quality of our framework.</dcterms:abstract> </rdf:Description> </rdf:RDF>