Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the thesis presented, we will analyze a PDE-constrained optimal control problem with uncertain coefficients. While solving such optimal control problems, many expensive PDE solves are required, leading to high run times. It is beneficial to use a reduced order model instead of the high-dimensional PDE solves to overcome that problem. To achieve this, reduced basis (RB) methods are used in the following. This thesis contributes to the existing literature by developing a Greedy algorithm with adaptive sampling strategies for the training set and analyzing the Greedy algorithm in conjunction with stochastic descent methods and a Trust-Region framework. In addition to the Trust-Region method, further online enrichment strategies are investigated.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAUGER, Fabio, 2021. Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Hauger2021Adapt-55763, year={2021}, title={Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization}, address={Konstanz}, school={Universität Konstanz}, author={Hauger, Fabio} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55763"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T08:27:47Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T08:27:47Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Hauger, Fabio</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Hauger, Fabio</dc:contributor> <dcterms:issued>2021</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55763/3/Hauger_2-kvj0jeiy0v66.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55763"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization</dcterms:title> <dcterms:abstract xml:lang="eng">In the thesis presented, we will analyze a PDE-constrained optimal control problem with uncertain coefficients. While solving such optimal control problems, many expensive PDE solves are required, leading to high run times. It is beneficial to use a reduced order model instead of the high-dimensional PDE solves to overcome that problem. To achieve this, reduced basis (RB) methods are used in the following. This thesis contributes to the existing literature by developing a Greedy algorithm with adaptive sampling strategies for the training set and analyzing the Greedy algorithm in conjunction with stochastic descent methods and a Trust-Region framework. In addition to the Trust-Region method, further online enrichment strategies are investigated.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55763/3/Hauger_2-kvj0jeiy0v66.pdf"/> </rdf:Description> </rdf:RDF>