Publikation: Clustering and visualization of non-classified points from LiDAR data for helicopter navigation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we propose a dynamic DBSCAN-based method to cluster and visualize unclassified and potential dangerous obstacles in data sets recorded by a LiDAR sensor. The sensor delivers data sets in a short time interval, so a spatial superposition of multiple data sets is created. We use this superposition to create clusters incrementally. Knowledge about the position and size of each cluster is used to fuse clusters and the stabilization of clusters within multiple time frames. Cluster stability is a key feature to provide a smooth and un-distracting visualization for the pilot. Only a few lines are indicating the position of threatening unclassified points, where a hazardous situation for the helicopter could happen, if it comes too close. Clustering and visualization form a part of an entire synthetic vision processing chain, in which the LiDAR points support the generation of a real-time synthetic view of the environment
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EISENKEIL, Ferdinand, Tobias SCHAFHITZEL, Uwe KÜHNE, Oliver DEUSSEN, 2014. Clustering and visualization of non-classified points from LiDAR data for helicopter navigation. Sensor/Information Fusion, and Target Recognition XXIII. Baltimore, 5. Mai 2014 - 8. Mai 2014. In: KADAR, Ivan, ed.. Signal Processing, Sensor/Information Fusion, and Target Recognition XXIII ; 5–8 May 2014 Baltimore, Maryland, United States. Bellingham: SPIE, 2014, 90910V. Proceedings of SPIE. 9091. ISBN 978-1-62841-028-0. Available under: doi: 10.1117/12.2050497BibTex
@inproceedings{Eisenkeil2014Clust-30014, year={2014}, doi={10.1117/12.2050497}, title={Clustering and visualization of non-classified points from LiDAR data for helicopter navigation}, number={9091}, isbn={978-1-62841-028-0}, publisher={SPIE}, address={Bellingham}, series={Proceedings of SPIE}, booktitle={Signal Processing, Sensor/Information Fusion, and Target Recognition XXIII ; 5–8 May 2014 Baltimore, Maryland, United States}, editor={Kadar, Ivan}, author={Eisenkeil, Ferdinand and Schafhitzel, Tobias and Kühne, Uwe and Deussen, Oliver}, note={Article Number: 90910V} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30014"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Kühne, Uwe</dc:contributor> <dcterms:issued>2014</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30014"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-25T07:12:06Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30014/3/Eisenkeil_0-263482.pdf"/> <dcterms:title>Clustering and visualization of non-classified points from LiDAR data for helicopter navigation</dcterms:title> <dcterms:abstract xml:lang="eng">In this paper we propose a dynamic DBSCAN-based method to cluster and visualize unclassified and potential dangerous obstacles in data sets recorded by a LiDAR sensor. The sensor delivers data sets in a short time interval, so a spatial superposition of multiple data sets is created. We use this superposition to create clusters incrementally. Knowledge about the position and size of each cluster is used to fuse clusters and the stabilization of clusters within multiple time frames. Cluster stability is a key feature to provide a smooth and un-distracting visualization for the pilot. Only a few lines are indicating the position of threatening unclassified points, where a hazardous situation for the helicopter could happen, if it comes too close. Clustering and visualization form a part of an entire synthetic vision processing chain, in which the LiDAR points support the generation of a real-time synthetic view of the environment</dcterms:abstract> <dc:creator>Deussen, Oliver</dc:creator> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30014/3/Eisenkeil_0-263482.pdf"/> <dc:creator>Schafhitzel, Tobias</dc:creator> <dc:contributor>Schafhitzel, Tobias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-25T07:12:06Z</dcterms:available> <dc:creator>Eisenkeil, Ferdinand</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Kühne, Uwe</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:contributor>Eisenkeil, Ferdinand</dc:contributor> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>