Publikation:

Clustering and visualization of non-classified points from LiDAR data for helicopter navigation

Lade...
Vorschaubild

Dateien

Eisenkeil_0-263482.pdf
Eisenkeil_0-263482.pdfGröße: 908.6 KBDownloads: 390

Datum

2014

Autor:innen

Schafhitzel, Tobias
Kühne, Uwe

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

KADAR, Ivan, ed.. Signal Processing, Sensor/Information Fusion, and Target Recognition XXIII ; 5–8 May 2014 Baltimore, Maryland, United States. Bellingham: SPIE, 2014, 90910V. Proceedings of SPIE. 9091. ISBN 978-1-62841-028-0. Available under: doi: 10.1117/12.2050497

Zusammenfassung

In this paper we propose a dynamic DBSCAN-based method to cluster and visualize unclassified and potential dangerous obstacles in data sets recorded by a LiDAR sensor. The sensor delivers data sets in a short time interval, so a spatial superposition of multiple data sets is created. We use this superposition to create clusters incrementally. Knowledge about the position and size of each cluster is used to fuse clusters and the stabilization of clusters within multiple time frames. Cluster stability is a key feature to provide a smooth and un-distracting visualization for the pilot. Only a few lines are indicating the position of threatening unclassified points, where a hazardous situation for the helicopter could happen, if it comes too close. Clustering and visualization form a part of an entire synthetic vision processing chain, in which the LiDAR points support the generation of a real-time synthetic view of the environment

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

LiDAR, Density-based Clustering, Head-mounted Displays, Visualization, R-Functions, Synthetic Vision

Konferenz

Sensor/Information Fusion, and Target Recognition XXIII, 5. Mai 2014 - 8. Mai 2014, Baltimore
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690EISENKEIL, Ferdinand, Tobias SCHAFHITZEL, Uwe KÜHNE, Oliver DEUSSEN, 2014. Clustering and visualization of non-classified points from LiDAR data for helicopter navigation. Sensor/Information Fusion, and Target Recognition XXIII. Baltimore, 5. Mai 2014 - 8. Mai 2014. In: KADAR, Ivan, ed.. Signal Processing, Sensor/Information Fusion, and Target Recognition XXIII ; 5–8 May 2014 Baltimore, Maryland, United States. Bellingham: SPIE, 2014, 90910V. Proceedings of SPIE. 9091. ISBN 978-1-62841-028-0. Available under: doi: 10.1117/12.2050497
BibTex
@inproceedings{Eisenkeil2014Clust-30014,
  year={2014},
  doi={10.1117/12.2050497},
  title={Clustering and visualization of non-classified points from LiDAR data for helicopter navigation},
  number={9091},
  isbn={978-1-62841-028-0},
  publisher={SPIE},
  address={Bellingham},
  series={Proceedings of SPIE},
  booktitle={Signal Processing, Sensor/Information Fusion, and Target Recognition XXIII ; 5–8 May 2014 Baltimore, Maryland, United States},
  editor={Kadar, Ivan},
  author={Eisenkeil, Ferdinand and Schafhitzel, Tobias and Kühne, Uwe and Deussen, Oliver},
  note={Article Number: 90910V}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30014">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Kühne, Uwe</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30014"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-25T07:12:06Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30014/3/Eisenkeil_0-263482.pdf"/>
    <dcterms:title>Clustering and visualization of non-classified points from LiDAR data for helicopter navigation</dcterms:title>
    <dcterms:abstract xml:lang="eng">In this paper we propose a dynamic DBSCAN-based method to cluster and visualize unclassified and potential dangerous obstacles in data sets recorded by a LiDAR sensor. The sensor delivers data sets in a short time interval, so a spatial superposition of multiple data sets is created. We use this superposition to create clusters incrementally. Knowledge about the position and size of each cluster is used to fuse clusters and the stabilization of clusters within multiple time frames. Cluster stability is a key feature to provide a smooth and un-distracting visualization for the pilot. Only a few lines are indicating the position of threatening unclassified points, where a hazardous situation for the helicopter could happen, if it comes too close. Clustering and visualization form a part of an entire synthetic vision processing chain, in which the LiDAR points support the generation of a real-time synthetic view of the environment</dcterms:abstract>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30014/3/Eisenkeil_0-263482.pdf"/>
    <dc:creator>Schafhitzel, Tobias</dc:creator>
    <dc:contributor>Schafhitzel, Tobias</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-25T07:12:06Z</dcterms:available>
    <dc:creator>Eisenkeil, Ferdinand</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Kühne, Uwe</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Eisenkeil, Ferdinand</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen