Publikation: Joint Bounding of Peaks Across Samples Improves Differential Analysis in Mass Spectrometry-Based Metabolomics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
As mass spectrometry-based metabolomics becomes more widely used in biomedical research, it is important to revisit existing data analysis paradigms. Existing data preprocessing efforts have largely focused on methods which start by extracting features separately from each sample, followed by a subsequent attempt to group features across samples to facilitate comparisons. We show that this preprocessing approach leads to unnecessary variability in peak quantifications that adversely impacts downstream analysis. We present a new method, bakedpi, for the preprocessing of both centroid and profile mode metabolomics data that relies on an intensity-weighted bivariate kernel density estimation on a pooling of all samples to detect peaks. This new method reduces this unnecessary quantification variability and increases power in downstream differential analysis.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MYINT, Leslie, Andre KLEENSANG, Liang ZHAO, Thomas HARTUNG, Kasper D. HANSEN, 2017. Joint Bounding of Peaks Across Samples Improves Differential Analysis in Mass Spectrometry-Based Metabolomics. In: Analytical Chemistry. 2017, 89(6), pp. 3517-3523. ISSN 0003-2700. eISSN 1520-6882. Available under: doi: 10.1021/acs.analchem.6b04719BibTex
@article{Myint2017-03-21Joint-39013, year={2017}, doi={10.1021/acs.analchem.6b04719}, title={Joint Bounding of Peaks Across Samples Improves Differential Analysis in Mass Spectrometry-Based Metabolomics}, number={6}, volume={89}, issn={0003-2700}, journal={Analytical Chemistry}, pages={3517--3523}, author={Myint, Leslie and Kleensang, Andre and Zhao, Liang and Hartung, Thomas and Hansen, Kasper D.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39013"> <dc:creator>Hansen, Kasper D.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-23T08:53:09Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Hansen, Kasper D.</dc:contributor> <dcterms:title>Joint Bounding of Peaks Across Samples Improves Differential Analysis in Mass Spectrometry-Based Metabolomics</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39013/1/Myint_0-405968.pdf"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">As mass spectrometry-based metabolomics becomes more widely used in biomedical research, it is important to revisit existing data analysis paradigms. Existing data preprocessing efforts have largely focused on methods which start by extracting features separately from each sample, followed by a subsequent attempt to group features across samples to facilitate comparisons. We show that this preprocessing approach leads to unnecessary variability in peak quantifications that adversely impacts downstream analysis. We present a new method, bakedpi, for the preprocessing of both centroid and profile mode metabolomics data that relies on an intensity-weighted bivariate kernel density estimation on a pooling of all samples to detect peaks. This new method reduces this unnecessary quantification variability and increases power in downstream differential analysis.</dcterms:abstract> <dc:contributor>Hartung, Thomas</dc:contributor> <dc:creator>Zhao, Liang</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Myint, Leslie</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39013"/> <dc:contributor>Kleensang, Andre</dc:contributor> <dc:contributor>Zhao, Liang</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-23T08:53:09Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39013/1/Myint_0-405968.pdf"/> <dc:creator>Hartung, Thomas</dc:creator> <dcterms:issued>2017-03-21</dcterms:issued> <dc:creator>Kleensang, Andre</dc:creator> <dc:contributor>Myint, Leslie</dc:contributor> </rdf:Description> </rdf:RDF>