Publikation:

A combinatorial algorithm for the 1-median problem in Rd with the Chebyshev norm

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Hatzl, Johannes

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Operations Research Letters. 2010, 38(5), pp. 383-385. ISSN 0167-6377. Available under: doi: 10.1016/j.orl.2010.07.002

Zusammenfassung

We consider the 1-median problem in Rd the MathML source with the Chebyshev norm: given n points with non-negative weights, find a point that minimizes the sum of the weighted distances to the given points. We propose a combinatorial algorithm for this problem by reformulating it as a fractional b-matching problem. This graph-theoretical problem can be solved by a min-cost-flow algorithm. Moreover, we show that there is a 1-median, which is half-integral, provided that the points have integral coordinates.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Facility location, 1-median problem, Fractional b-matching

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HATZL, Johannes, Andreas KARRENBAUER, 2010. A combinatorial algorithm for the 1-median problem in Rd with the Chebyshev norm. In: Operations Research Letters. 2010, 38(5), pp. 383-385. ISSN 0167-6377. Available under: doi: 10.1016/j.orl.2010.07.002
BibTex
@article{Hatzl2010combi-12636,
  year={2010},
  doi={10.1016/j.orl.2010.07.002},
  title={A combinatorial algorithm for the 1-median problem in Rd with the Chebyshev norm},
  number={5},
  volume={38},
  issn={0167-6377},
  journal={Operations Research Letters},
  pages={383--385},
  author={Hatzl, Johannes and Karrenbauer, Andreas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12636">
    <dc:creator>Hatzl, Johannes</dc:creator>
    <dcterms:title>A combinatorial algorithm for the 1-median problem in Rd with the Chebyshev norm</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Karrenbauer, Andreas</dc:creator>
    <dc:contributor>Karrenbauer, Andreas</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T13:24:52Z</dc:date>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Hatzl, Johannes</dc:contributor>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:bibliographicCitation>First publ. in: Operations Research Letters 38 (2010), 5, pp. 383-385</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">We consider the 1-median problem in Rd the MathML source with the Chebyshev norm: given n points with non-negative weights, find a point that minimizes the sum of the weighted distances to the given points. We propose a combinatorial algorithm for this problem by reformulating it as a fractional b-matching problem. This graph-theoretical problem can be solved by a min-cost-flow algorithm. Moreover, we show that there is a 1-median, which is half-integral, provided that the points have integral coordinates.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12636"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T13:24:52Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen