Publikation:

Opinion Dynamics With Mobile Agents : Contrarian Effects by Spatial Correlations

Lade...
Vorschaubild

Dateien

Hamann_2-ouduwrr1c5t6.pdf
Hamann_2-ouduwrr1c5t6.pdfGröße: 794.94 KBDownloads: 30

Datum

2018

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Frontiers in Robotics and AI. Frontiers Media. 2018, 5, 63. eISSN 2296-9144. Available under: doi: 10.3389/frobt.2018.00063

Zusammenfassung

We investigate the dynamics of opinion formation in a group of mobile agents with noisy perceptions. Two models are applied, the 2-state Galam opinion dynamics model with contrarians and an urn model of collective decision-making. It is shown that models built on the well-mixed assumption fail to represent the dynamics of a simple scenario. The challenge of accounting for correlations in the agents' spatial distribution is overcome by different heuristics and supported by empirical investigations. We present a concise, simple 1-dimensional macroscopic modeling approach that can be tuned to correctly model spatial correlations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

swarm robotics, swarm intelligence, opinion dynamics, collective decision making, swarm robotic system

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAMANN, Heiko, 2018. Opinion Dynamics With Mobile Agents : Contrarian Effects by Spatial Correlations. In: Frontiers in Robotics and AI. Frontiers Media. 2018, 5, 63. eISSN 2296-9144. Available under: doi: 10.3389/frobt.2018.00063
BibTex
@article{Hamann2018-06-06Opini-59788,
  year={2018},
  doi={10.3389/frobt.2018.00063},
  title={Opinion Dynamics With Mobile Agents : Contrarian Effects by Spatial Correlations},
  volume={5},
  journal={Frontiers in Robotics and AI},
  author={Hamann, Heiko},
  note={Article Number: 63}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59788">
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59788/3/Hamann_2-ouduwrr1c5t6.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59788/3/Hamann_2-ouduwrr1c5t6.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T13:17:54Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59788"/>
    <dc:language>eng</dc:language>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:title>Opinion Dynamics With Mobile Agents : Contrarian Effects by Spatial Correlations</dcterms:title>
    <dcterms:abstract xml:lang="eng">We investigate the dynamics of opinion formation in a group of mobile agents with noisy perceptions. Two models are applied, the 2-state Galam opinion dynamics model with contrarians and an urn model of collective decision-making. It is shown that models built on the well-mixed assumption fail to represent the dynamics of a simple scenario. The challenge of accounting for correlations in the agents' spatial distribution is overcome by different heuristics and supported by empirical investigations. We present a concise, simple 1-dimensional macroscopic modeling approach that can be tuned to correctly model spatial correlations.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2018-06-06</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T13:17:54Z</dc:date>
    <dc:rights>Attribution 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen