Publikation:

Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Sortino, Luca
Zotev, Panaiot G.
Genco, Armando
Cambiasso, Javier
Mignuzzi, Sandro
Maier, Stefan A.
Sapienza, Riccardo
Tartakovskii, Alexander I.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 676108

Projekt

Spin-Nano
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACS Photonics. ACS Publications. 2020, 7(9), pp. 2413-2422. eISSN 2330-4022. Available under: doi: 10.1021/acsphotonics.0c00294

Zusammenfassung

Atomically thin two-dimensional semiconducting transition metal dichalcogenides (TMDs) can withstand large levels of strain before their irreversible damage occurs. This unique property offers a promising route for control of the optical and electronic properties of TMDs, for instance, by depositing them on nanostructured surfaces, where position-dependent strain can be produced on the nanoscale. Here, we demonstrate strain-induced modifications of the optical properties of mono- and bilayer TMD WSe2 placed on photonic nanoantennas made from gallium phosphide (GaP). Photoluminescence (PL) from the strained areas of the TMD layer is enhanced owing to the efficient coupling with the confined optical mode of the nanoantenna. Thus, by following the shift of the PL peak, we deduce the changes in the strain in WSe2 deposited on the nanoantennas of different radii. In agreement with the presented theory, strain up to ≈1.4% is observed for WSe2 monolayers. We also estimate that >3% strain is achieved in bilayers, accompanied by the emergence of a direct bandgap in this normally indirect-bandgap semiconductor. At cryogenic temperatures, we find evidence of the exciton confinement in the most strained nanoscale parts of the WSe2 layers, as also predicted by our theoretical model. Our results of direct relevance for both dielectric and plasmonic nanoantennas, show that strain in atomically thin semiconductors can be used as an additional parameter for engineering light–matter interaction in nanophotonic devices.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

transition metal dichalcogenides, dielectric nanoantennas, exciton, strain engineering, photoluminescence

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SORTINO, Luca, Matthew BROOKS, Panaiot G. ZOTEV, Armando GENCO, Javier CAMBIASSO, Sandro MIGNUZZI, Stefan A. MAIER, Guido BURKARD, Riccardo SAPIENZA, Alexander I. TARTAKOVSKII, 2020. Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors. In: ACS Photonics. ACS Publications. 2020, 7(9), pp. 2413-2422. eISSN 2330-4022. Available under: doi: 10.1021/acsphotonics.0c00294
BibTex
@article{Sortino2020-09-16Diele-51061,
  year={2020},
  doi={10.1021/acsphotonics.0c00294},
  title={Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors},
  number={9},
  volume={7},
  journal={ACS Photonics},
  pages={2413--2422},
  author={Sortino, Luca and Brooks, Matthew and Zotev, Panaiot G. and Genco, Armando and Cambiasso, Javier and Mignuzzi, Sandro and Maier, Stefan A. and Burkard, Guido and Sapienza, Riccardo and Tartakovskii, Alexander I.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51061">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2020-09-16</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:title>Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors</dcterms:title>
    <dc:creator>Tartakovskii, Alexander I.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Maier, Stefan A.</dc:creator>
    <dc:creator>Genco, Armando</dc:creator>
    <dc:creator>Burkard, Guido</dc:creator>
    <dcterms:abstract xml:lang="eng">Atomically thin two-dimensional semiconducting transition metal dichalcogenides (TMDs) can withstand large levels of strain before their irreversible damage occurs. This unique property offers a promising route for control of the optical and electronic properties of TMDs, for instance, by depositing them on nanostructured surfaces, where position-dependent strain can be produced on the nanoscale. Here, we demonstrate strain-induced modifications of the optical properties of mono- and bilayer TMD WSe&lt;sub&gt;2&lt;/sub&gt; placed on photonic nanoantennas made from gallium phosphide (GaP). Photoluminescence (PL) from the strained areas of the TMD layer is enhanced owing to the efficient coupling with the confined optical mode of the nanoantenna. Thus, by following the shift of the PL peak, we deduce the changes in the strain in WSe&lt;sub&gt;2&lt;/sub&gt; deposited on the nanoantennas of different radii. In agreement with the presented theory, strain up to ≈1.4% is observed for WSe&lt;sub&gt;2&lt;/sub&gt; monolayers. We also estimate that &gt;3% strain is achieved in bilayers, accompanied by the emergence of a direct bandgap in this normally indirect-bandgap semiconductor. At cryogenic temperatures, we find evidence of the exciton confinement in the most strained nanoscale parts of the WSe&lt;sub&gt;2&lt;/sub&gt; layers, as also predicted by our theoretical model. Our results of direct relevance for both dielectric and plasmonic nanoantennas, show that strain in atomically thin semiconductors can be used as an additional parameter for engineering light–matter interaction in nanophotonic devices.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-28T13:00:43Z</dc:date>
    <dc:creator>Zotev, Panaiot G.</dc:creator>
    <dc:contributor>Zotev, Panaiot G.</dc:contributor>
    <dc:contributor>Mignuzzi, Sandro</dc:contributor>
    <dc:contributor>Maier, Stefan A.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-28T13:00:43Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51061"/>
    <dc:contributor>Genco, Armando</dc:contributor>
    <dc:creator>Brooks, Matthew</dc:creator>
    <dc:contributor>Burkard, Guido</dc:contributor>
    <dc:contributor>Sapienza, Riccardo</dc:contributor>
    <dc:contributor>Brooks, Matthew</dc:contributor>
    <dc:contributor>Tartakovskii, Alexander I.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Sortino, Luca</dc:contributor>
    <dc:creator>Cambiasso, Javier</dc:creator>
    <dc:creator>Mignuzzi, Sandro</dc:creator>
    <dc:creator>Sapienza, Riccardo</dc:creator>
    <dc:contributor>Cambiasso, Javier</dc:contributor>
    <dc:creator>Sortino, Luca</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen