Publikation: Exotic Option Pricing in Stochastic Volatility Levy Models and with Fractional Brownian Motion
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The paper Exotic Option Pricing in Stochastic Volatility Levy Models and with Fractional Brownian Motion aims on extending the restrictive Black-Scholes model by allowing volatility to evolve randomly. These models are used to price exotic derivatives and certificates. The first stochastic volatility model is the Heston model. In order to capture jumps in volatility and stock evolution, Levy processes and Ornstein-Uhlenbeck processes are under discussion. Using the convenient features of Levy processes, a stochastic volatility stock evolution model, where volatility is driven by a Levy process and volatility evolution and stock evolution are linked, is introduced.
This model is named after Barndorff-Nielsen and Shephard (BNS for short). However, the BNS model does not include the long memory behavior of volatility. This justifies a discussion about the fractional Brownian motion, the most important stochastic process to model long memory. Finally, the different models are calibrated by fitting prices of observed European options and compared when bonus certificates and express certificates are valued.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GRAF, Ferdinand, 2007. Exotic Option Pricing in Stochastic Volatility Levy Models and with Fractional Brownian Motion [Master thesis]BibTex
@mastersthesis{Graf2007Exoti-11839, year={2007}, title={Exotic Option Pricing in Stochastic Volatility Levy Models and with Fractional Brownian Motion}, author={Graf, Ferdinand} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/11839"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:contributor>Graf, Ferdinand</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:format>application/pdf</dc:format> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11839/1/Graf_Dipl.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/11839"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11839/1/Graf_Dipl.pdf"/> <dcterms:abstract xml:lang="eng">The paper Exotic Option Pricing in Stochastic Volatility Levy Models and with Fractional Brownian Motion aims on extending the restrictive Black-Scholes model by allowing volatility to evolve randomly. These models are used to price exotic derivatives and certificates. The first stochastic volatility model is the Heston model. In order to capture jumps in volatility and stock evolution, Levy processes and Ornstein-Uhlenbeck processes are under discussion. Using the convenient features of Levy processes, a stochastic volatility stock evolution model, where volatility is driven by a Levy process and volatility evolution and stock evolution are linked, is introduced.<br />This model is named after Barndorff-Nielsen and Shephard (BNS for short). However, the BNS model does not include the long memory behavior of volatility. This justifies a discussion about the fractional Brownian motion, the most important stochastic process to model long memory. Finally, the different models are calibrated by fitting prices of observed European options and compared when bonus certificates and express certificates are valued.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:40:36Z</dc:date> <dcterms:title>Exotic Option Pricing in Stochastic Volatility Levy Models and with Fractional Brownian Motion</dcterms:title> <dc:creator>Graf, Ferdinand</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:40:36Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2007</dcterms:issued> </rdf:Description> </rdf:RDF>