Publikation: Hawkmoth lamina monopolar cells act as dynamic spatial filters to optimize vision at different light levels
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
How neural form and function are connected is a central question of neuroscience. One prominent functional hypothesis, from the beginnings of neuroanatomical study, states that laterally extending dendrites of insect lamina monopolar cells (LMCs) spatially integrate visual information. We provide the first direct functional evidence for this hypothesis using intracellular recordings from type II LMCs in the hawkmoth Macroglossum stellatarum. We show that their spatial receptive fields broaden with decreasing light intensities, thus trading spatial resolution for higher sensitivity. These dynamic changes in LMC spatial properties can be explained by the density and lateral extent of their dendritic arborizations. Our results thus provide the first physiological evidence for a century-old hypothesis, directly correlating physiological response properties with distinctive dendritic morphology.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STÖCKL, Anna L., David Charles O’CARROLL, Eric James WARRANT, 2020. Hawkmoth lamina monopolar cells act as dynamic spatial filters to optimize vision at different light levels. In: Science Advances. American Association for the Advancement of Science (AAAS). 2020, 6(16), eaaz8645. eISSN 2375-2548. Available under: doi: 10.1126/sciadv.aaz8645BibTex
@article{Stockl2020Hawkm-66167, year={2020}, doi={10.1126/sciadv.aaz8645}, title={Hawkmoth lamina monopolar cells act as dynamic spatial filters to optimize vision at different light levels}, number={16}, volume={6}, journal={Science Advances}, author={Stöckl, Anna L. and O’Carroll, David Charles and Warrant, Eric James}, note={Article Number: eaaz8645} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66167"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>O’Carroll, David Charles</dc:contributor> <dc:creator>Warrant, Eric James</dc:creator> <dcterms:title>Hawkmoth lamina monopolar cells act as dynamic spatial filters to optimize vision at different light levels</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-22T09:06:19Z</dc:date> <dcterms:issued>2020</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-22T09:06:19Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66167/3/Stoeckl_2-14i2i81sg2j43.pdf"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">How neural form and function are connected is a central question of neuroscience. One prominent functional hypothesis, from the beginnings of neuroanatomical study, states that laterally extending dendrites of insect lamina monopolar cells (LMCs) spatially integrate visual information. We provide the first direct functional evidence for this hypothesis using intracellular recordings from type II LMCs in the hawkmoth Macroglossum stellatarum. We show that their spatial receptive fields broaden with decreasing light intensities, thus trading spatial resolution for higher sensitivity. These dynamic changes in LMC spatial properties can be explained by the density and lateral extent of their dendritic arborizations. Our results thus provide the first physiological evidence for a century-old hypothesis, directly correlating physiological response properties with distinctive dendritic morphology.</dcterms:abstract> <dc:contributor>Warrant, Eric James</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66167"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Stöckl, Anna L.</dc:creator> <dc:creator>O’Carroll, David Charles</dc:creator> <dc:contributor>Stöckl, Anna L.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66167/3/Stoeckl_2-14i2i81sg2j43.pdf"/> </rdf:Description> </rdf:RDF>