Publikation: Estimation of continuous environments by robot swarms : Correlated networks and decision-making
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Collective decision-making is an essential capability of large-scale multi-robot systems to establish autonomy on the swarm level. A large portion of literature on collective decision-making in swarm robotics focuses on discrete decisions selecting from a limited number of options. Here we assign a decentralized robot system with the task of exploring an unbounded environment, finding consensus on the mean of a measurable environmental feature, and aggregating at areas where that value is measured (e.g., a contour line). A unique quality of this task is a causal loop between the robots' dynamic network topology and their decision-making. For example, the network's mean node degree influences time to convergence while the currently agreed-on mean value influences the swarm's aggregation location, hence, also the network structure as well as the precision error. We propose a control algorithm and study it in real-world robot swarm experiments in different environments. We show that our approach is effective and achieves higher precision than a control experiment. We anticipate applications, for example, in containing pollution with surface vehicles.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RAOUFI, Mohsen, Pawel ROMANCZUK, Heiko HAMANN, 2023. Estimation of continuous environments by robot swarms : Correlated networks and decision-making. ICRA 2023 : IEEE International Conference on Robotics and Automation. London, United Kingdom, 29. Mai 2023 - 2. Juni 2023. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), Conference Proceedings. Piscataway, NJ: IEEE, 2023, S. 5486-5492. ISBN 979-8-3503-2365-8. Verfügbar unter: doi: 10.1109/icra48891.2023.10161354BibTex
@inproceedings{Raoufi2023Estim-69735, year={2023}, doi={10.1109/icra48891.2023.10161354}, title={Estimation of continuous environments by robot swarms : Correlated networks and decision-making}, isbn={979-8-3503-2365-8}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA), Conference Proceedings}, pages={5486--5492}, author={Raoufi, Mohsen and Romanczuk, Pawel and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69735"> <dc:creator>Raoufi, Mohsen</dc:creator> <dcterms:title>Estimation of continuous environments by robot swarms : Correlated networks and decision-making</dcterms:title> <dcterms:issued>2023</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Raoufi, Mohsen</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Romanczuk, Pawel</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69735/1/Raoufi_2-19kgh1wsob234.pdf"/> <dcterms:abstract>Collective decision-making is an essential capability of large-scale multi-robot systems to establish autonomy on the swarm level. A large portion of literature on collective decision-making in swarm robotics focuses on discrete decisions selecting from a limited number of options. Here we assign a decentralized robot system with the task of exploring an unbounded environment, finding consensus on the mean of a measurable environmental feature, and aggregating at areas where that value is measured (e.g., a contour line). A unique quality of this task is a causal loop between the robots' dynamic network topology and their decision-making. For example, the network's mean node degree influences time to convergence while the currently agreed-on mean value influences the swarm's aggregation location, hence, also the network structure as well as the precision error. We propose a control algorithm and study it in real-world robot swarm experiments in different environments. We show that our approach is effective and achieves higher precision than a control experiment. We anticipate applications, for example, in containing pollution with surface vehicles.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hamann, Heiko</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69735"/> <dc:creator>Hamann, Heiko</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-03T06:28:36Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69735/1/Raoufi_2-19kgh1wsob234.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-03T06:28:36Z</dc:date> <dc:creator>Romanczuk, Pawel</dc:creator> </rdf:Description> </rdf:RDF>