Publikation: Direct Correlation Function of a Crystalline Solid
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Direct correlation functions (DCFs), linked to the second functional derivative of the free energy with respect to the one-particle density, play a fundamental role in a statistical mechanics description of matter. This holds, in particular, for the ordered phases: DCFs contain information about the local structure including defects and encode the thermodynamic properties of crystalline solids; they open a route to the elastic constants beyond low temperature expansions. Via a demanding numerical approach, we have explicitly calculated for the first time the DCF of a solid: based on the fundamental measure concept, we provide results for the DCF of a hard sphere crystal. We demonstrate that this function differs at coexistence significantly from its liquid counterpart—both in shape as well as in its order of magnitude—because it is dominated by vacancies. We provide evidence that the traditional use of liquid DCFs in functional Taylor expansions of the free energy is conceptually wrong and show that the emergent elastic constants are in good agreement with simulation-based results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LIN, Shang-Chun, Martin OETTEL, Johannes M. HÄRING, Rudolf HAUSSMANN, Matthias FUCHS, Gerhard KAHL, 2021. Direct Correlation Function of a Crystalline Solid. In: Physical Review Letters. American Physical Society (APS). 2021, 127(8), 085501. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.127.085501BibTex
@article{Lin2021Direc-54811, year={2021}, doi={10.1103/PhysRevLett.127.085501}, title={Direct Correlation Function of a Crystalline Solid}, number={8}, volume={127}, issn={0031-9007}, journal={Physical Review Letters}, author={Lin, Shang-Chun and Oettel, Martin and Häring, Johannes M. and Haussmann, Rudolf and Fuchs, Matthias and Kahl, Gerhard}, note={Article Number: 085501} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54811"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Lin, Shang-Chun</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54811/1/Lin_2-1blp9s27tihy9.pdf"/> <dcterms:title>Direct Correlation Function of a Crystalline Solid</dcterms:title> <dc:creator>Kahl, Gerhard</dc:creator> <dc:contributor>Oettel, Martin</dc:contributor> <dc:contributor>Kahl, Gerhard</dc:contributor> <dcterms:issued>2021</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-07T08:04:35Z</dc:date> <dc:creator>Haussmann, Rudolf</dc:creator> <dc:contributor>Häring, Johannes M.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54811/1/Lin_2-1blp9s27tihy9.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-07T08:04:35Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54811"/> <dc:creator>Fuchs, Matthias</dc:creator> <dcterms:abstract xml:lang="eng">Direct correlation functions (DCFs), linked to the second functional derivative of the free energy with respect to the one-particle density, play a fundamental role in a statistical mechanics description of matter. This holds, in particular, for the ordered phases: DCFs contain information about the local structure including defects and encode the thermodynamic properties of crystalline solids; they open a route to the elastic constants beyond low temperature expansions. Via a demanding numerical approach, we have explicitly calculated for the first time the DCF of a solid: based on the fundamental measure concept, we provide results for the DCF of a hard sphere crystal. We demonstrate that this function differs at coexistence significantly from its liquid counterpart—both in shape as well as in its order of magnitude—because it is dominated by vacancies. We provide evidence that the traditional use of liquid DCFs in functional Taylor expansions of the free energy is conceptually wrong and show that the emergent elastic constants are in good agreement with simulation-based results.</dcterms:abstract> <dc:contributor>Haussmann, Rudolf</dc:contributor> <dc:contributor>Fuchs, Matthias</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Oettel, Martin</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Lin, Shang-Chun</dc:creator> <dc:creator>Häring, Johannes M.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> </rdf:Description> </rdf:RDF>