Publikation: Machine Learning for Quantum Mechanical Properties of Atoms in Molecules
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Physical Chemistry Letters. American Chemical Society (ACS). 2015, 6(16), pp. 3309-3313. eISSN 1948-7185. Available under: doi: 10.1021/acs.jpclett.5b01456
Zusammenfassung
We introduce machine learning models of quantum mechanical observables of atoms in molecules. Instant out-of-sample predictions for proton and carbon nuclear chemical shifts, atomic core level excitations, and forces on atoms reach accuracies on par with density functional theory reference. Locality is exploited within nonlinear regression via local atom-centered coordinate systems. The approach is validated on a diverse set of 9 k small organic molecules. Linear scaling of computational cost in system size is demonstrated for saturated polymers with up to submesoscale lengths.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
machine learning, chemical shifts, core level ionization energies, forces, density functional theory, kernel ridge regression, linear scaling
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
RUPP, Matthias, Raghunathan RAMAKRISHNAN, O. Anatole VON LILIENFELD, 2015. Machine Learning for Quantum Mechanical Properties of Atoms in Molecules. In: Journal of Physical Chemistry Letters. American Chemical Society (ACS). 2015, 6(16), pp. 3309-3313. eISSN 1948-7185. Available under: doi: 10.1021/acs.jpclett.5b01456BibTex
@article{Rupp2015-05-02T16:11:05ZMachi-52125, year={2015}, doi={10.1021/acs.jpclett.5b01456}, title={Machine Learning for Quantum Mechanical Properties of Atoms in Molecules}, number={16}, volume={6}, journal={Journal of Physical Chemistry Letters}, pages={3309--3313}, author={Rupp, Matthias and Ramakrishnan, Raghunathan and von Lilienfeld, O. Anatole} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52125"> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Rupp, Matthias</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>von Lilienfeld, O. Anatole</dc:creator> <dc:contributor>von Lilienfeld, O. Anatole</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T12:16:55Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Ramakrishnan, Raghunathan</dc:creator> <dcterms:abstract xml:lang="eng">We introduce machine learning models of quantum mechanical observables of atoms in molecules. Instant out-of-sample predictions for proton and carbon nuclear chemical shifts, atomic core level excitations, and forces on atoms reach accuracies on par with density functional theory reference. Locality is exploited within nonlinear regression via local atom-centered coordinate systems. The approach is validated on a diverse set of 9 k small organic molecules. Linear scaling of computational cost in system size is demonstrated for saturated polymers with up to submesoscale lengths.</dcterms:abstract> <dcterms:issued>2015-05-02T16:11:05Z</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T12:16:55Z</dcterms:available> <dc:contributor>Ramakrishnan, Raghunathan</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Rupp, Matthias</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52125"/> <dcterms:title>Machine Learning for Quantum Mechanical Properties of Atoms in Molecules</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja