Publikation: High Dimensional Frustum PointNet for 3D Object Detection from Camera, LiDAR, and Radar
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Fusing the raw data from different automotive sensors for real-world environment perception is still challenging due to their different representations and data formats. In this work, we propose a novel method termed High Dimensional Frustum PointNet for 3D object detection in the context of autonomous driving. Motivated by the goals data diversity and lossless processing of the data, our deep learning approach directly and jointly uses the raw data from the camera, LiDAR, and radar. In more detail, given 2D region proposals and classification from camera images, a high dimensional convolution operator captures local features from a point cloud enhanced with color and temporal information. Radars are used as adaptive plug-in sensors to refine object detection performance. As shown by an extensive evaluation on the nuScenes 3D detection benchmark, our network outperforms most of the previous methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANG, Leichen, Tianbai CHEN, Carsten ANKLAM, Bastian GOLDLÜCKE, 2020. High Dimensional Frustum PointNet for 3D Object Detection from Camera, LiDAR, and Radar. 2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas, NV, USA, 19. Okt. 2020 - 13. Nov. 2020. In: 2020 IEEE Intelligent Vehicles Symposium (IV). Piscataway, NJ: IEEE, 2020, pp. 1615-1622. ISSN 1931-0587. eISSN 2642-7214. ISBN 978-1-72816-673-5. Available under: doi: 10.1109/IV47402.2020.9304655BibTex
@inproceedings{Wang2020Dimen-54152, year={2020}, doi={10.1109/IV47402.2020.9304655}, title={High Dimensional Frustum PointNet for 3D Object Detection from Camera, LiDAR, and Radar}, isbn={978-1-72816-673-5}, issn={1931-0587}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2020 IEEE Intelligent Vehicles Symposium (IV)}, pages={1615--1622}, author={Wang, Leichen and Chen, Tianbai and Anklam, Carsten and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54152"> <dc:creator>Wang, Leichen</dc:creator> <dc:contributor>Goldlücke, Bastian</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54152"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Chen, Tianbai</dc:creator> <dcterms:abstract xml:lang="eng">Fusing the raw data from different automotive sensors for real-world environment perception is still challenging due to their different representations and data formats. In this work, we propose a novel method termed High Dimensional Frustum PointNet for 3D object detection in the context of autonomous driving. Motivated by the goals data diversity and lossless processing of the data, our deep learning approach directly and jointly uses the raw data from the camera, LiDAR, and radar. In more detail, given 2D region proposals and classification from camera images, a high dimensional convolution operator captures local features from a point cloud enhanced with color and temporal information. Radars are used as adaptive plug-in sensors to refine object detection performance. As shown by an extensive evaluation on the nuScenes 3D detection benchmark, our network outperforms most of the previous methods.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Wang, Leichen</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-30T11:30:52Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-30T11:30:52Z</dc:date> <dcterms:title>High Dimensional Frustum PointNet for 3D Object Detection from Camera, LiDAR, and Radar</dcterms:title> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:contributor>Chen, Tianbai</dc:contributor> <dc:creator>Anklam, Carsten</dc:creator> <dc:contributor>Anklam, Carsten</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>