Publikation:

Bagged Pretested Portfolio Selection

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Business & Economic Statistics (JBES). Taylor & Francis. 2023, 41(4), pp. 1116-1131. ISSN 0735-0015. eISSN 1537-2707. Available under: doi: 10.1080/07350015.2022.2110880

Zusammenfassung

This paper exploits the idea of combining pretesting and bagging to choose between competing portfolio strategies. We propose an estimator for the portfolio weight vector, which optimally trades off Type I against Type II errors when choosing the best investment strategy. Furthermore, we accommodate the idea of bagging in the portfolio testing problem, which helps to avoid sharp thresholding and reduces turnover costs substantially. Our Bagged Pretested Portfolio Selection (BPPS) approach borrows from both the shrinkage and the forecast combination literature. The portfolio weights of our strategy are weighted averages of the portfolio weights from a set of stand-alone strategies. More specifically, the weights are generated from pseudo-out-of-sample portfolio pretesting, such that they reflect the probability that a given strategy will be overall best performing. The resulting strategy allows for a flexible and smooth switch between the underlying strategies and outperforms the corresponding stand-alone strategies. Besides yielding high point estimates of the portfolio performance measures, the BPPS approach performs exceptionally well in terms of precision and is robust against outliers resulting from the choice of the asset space.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

pretest estimation, bagging, portfolio allocation, adaptive learning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAZAK, Ekaterina, Winfried POHLMEIER, 2023. Bagged Pretested Portfolio Selection. In: Journal of Business & Economic Statistics (JBES). Taylor & Francis. 2023, 41(4), pp. 1116-1131. ISSN 0735-0015. eISSN 1537-2707. Available under: doi: 10.1080/07350015.2022.2110880
BibTex
@article{Kazak2023Bagge-58359,
  year={2023},
  doi={10.1080/07350015.2022.2110880},
  title={Bagged Pretested Portfolio Selection},
  number={4},
  volume={41},
  issn={0735-0015},
  journal={Journal of Business & Economic Statistics (JBES)},
  pages={1116--1131},
  author={Kazak, Ekaterina and Pohlmeier, Winfried}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58359">
    <dcterms:title>Bagged Pretested Portfolio Selection</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:issued>2023</dcterms:issued>
    <dc:contributor>Kazak, Ekaterina</dc:contributor>
    <dc:contributor>Pohlmeier, Winfried</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Kazak, Ekaterina</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58359"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-23T06:56:35Z</dc:date>
    <dcterms:abstract xml:lang="eng">This paper exploits the idea of combining pretesting and bagging to choose between competing portfolio strategies. We propose an estimator for the portfolio weight vector, which optimally trades off Type I against Type II errors when choosing the best investment strategy. Furthermore, we accommodate the idea of bagging in the portfolio testing problem, which helps to avoid sharp thresholding and reduces turnover costs substantially. Our Bagged Pretested Portfolio Selection (BPPS) approach borrows from both the shrinkage and the forecast combination literature. The portfolio weights of our strategy are weighted averages of the portfolio weights from a set of stand-alone strategies. More specifically, the weights are generated from pseudo-out-of-sample portfolio pretesting, such that they reflect the probability that a given strategy will be overall best performing. The resulting strategy allows for a flexible and smooth switch between the underlying strategies and outperforms the corresponding stand-alone strategies. Besides yielding high point estimates of the portfolio performance measures, the BPPS approach performs exceptionally well in terms of precision and is robust against outliers resulting from the choice of the asset space.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Pohlmeier, Winfried</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-23T06:56:35Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Nein
Diese Publikation teilen