Bagged Pretested Portfolio Selection

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Business & Economic Statistics (JBES). Taylor & Francis. ISSN 0735-0015. eISSN 1537-2707. Available under: doi: 10.1080/07350015.2022.2110880
Zusammenfassung

This paper exploits the idea of combining pretesting and bagging to choose between competing portfolio strategies. We propose an estimator for the portfolio weight vector, which optimally trades off Type I against Type II errors when choosing the best investment strategy. Furthermore, we accommodate the idea of bagging in the portfolio testing problem, which helps to avoid sharp thresholding and reduces turnover costs substantially. Our Bagged Pretested Portfolio Selection (BPPS) approach borrows from both the shrinkage and the forecast combination literature. The portfolio weights of our strategy are weighted averages of the portfolio weights from a set of stand-alone strategies. More specifically, the weights are generated from pseudo-out-of-sample portfolio pretesting, such that they reflect the probability that a given strategy will be overall best performing. The resulting strategy allows for a flexible and smooth switch between the underlying strategies and outperforms the corresponding stand-alone strategies. Besides yielding high point estimates of the portfolio performance measures, the BPPS approach performs exceptionally well in terms of precision and is robust against outliers resulting from the choice of the asset space.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
pretest estimation, bagging, portfolio allocation, adaptive learning
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KAZAK, Ekaterina, Winfried POHLMEIER, 2022. Bagged Pretested Portfolio Selection. In: Journal of Business & Economic Statistics (JBES). Taylor & Francis. ISSN 0735-0015. eISSN 1537-2707. Available under: doi: 10.1080/07350015.2022.2110880
BibTex
@article{Kazak2022-09Bagge-58359,
  year={2022},
  doi={10.1080/07350015.2022.2110880},
  title={Bagged Pretested Portfolio Selection},
  issn={0735-0015},
  journal={Journal of Business & Economic Statistics (JBES)},
  author={Kazak, Ekaterina and Pohlmeier, Winfried}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58359">
    <dcterms:title>Bagged Pretested Portfolio Selection</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Kazak, Ekaterina</dc:contributor>
    <dc:contributor>Pohlmeier, Winfried</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Kazak, Ekaterina</dc:creator>
    <dcterms:issued>2022-09</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58359"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-23T06:56:35Z</dc:date>
    <dcterms:abstract xml:lang="eng">This paper exploits the idea of combining pretesting and bagging to choose between competing portfolio strategies. We propose an estimator for the portfolio weight vector, which optimally trades off Type I against Type II errors when choosing the best investment strategy. Furthermore, we accommodate the idea of bagging in the portfolio testing problem, which helps to avoid sharp thresholding and reduces turnover costs substantially. Our Bagged Pretested Portfolio Selection (BPPS) approach borrows from both the shrinkage and the forecast combination literature. The portfolio weights of our strategy are weighted averages of the portfolio weights from a set of stand-alone strategies. More specifically, the weights are generated from pseudo-out-of-sample portfolio pretesting, such that they reflect the probability that a given strategy will be overall best performing. The resulting strategy allows for a flexible and smooth switch between the underlying strategies and outperforms the corresponding stand-alone strategies. Besides yielding high point estimates of the portfolio performance measures, the BPPS approach performs exceptionally well in terms of precision and is robust against outliers resulting from the choice of the asset space.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Pohlmeier, Winfried</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-23T06:56:35Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Nein
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.