Publikation: Gate control of superconducting current : Mechanisms, parameters, and technological potential
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In conventional metal-oxide semiconductor (CMOS) electronics, the logic state of a device is set by a gate voltage (VG). The superconducting equivalent of such effect had remained unknown until it was recently shown that a VG can tune the superconducting current (supercurrent) flowing through a nanoconstriction in a superconductor. This gate-controlled supercurrent (GCS) can lead to superconducting logics like CMOS logics, but with lower energy dissipation. The physical mechanism underlying the GCS, however, remains under debate. In this review article, we illustrate the main mechanisms proposed for the GCS, and the material and device parameters that mostly affect it based on the evidence reported. We conclude that different mechanisms are at play in the different studies reported so far. We then outline studies that can help answer open questions on the effect and achieve control over it, which is key for applications. We finally give insights into the impact that the GCS can have toward high-performance computing with low-energy dissipation and quantum technologies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RUF, Leon, Claudio PUGLIA, Tosson ELALAILY, Giorgio DE SIMONI, Francois JOINT, Martin BERKE, Jennifer KOCH, Andrea IORIO, Sara KHORSHIDIAN, Peter MAKK, Simone GASPARINETTI, Szabolcs CSONKA, Wolfgang BELZIG, Mario CUOCO, Francesco GIAZOTTO, Elke SCHEER, Angelo DI BERNARDO, 2024. Gate control of superconducting current : Mechanisms, parameters, and technological potential. In: Applied Physics Reviews. AIP Publishing. 2024, 11(4), 041314. eISSN 1931-9401. Verfügbar unter: doi: 10.1063/5.0222371BibTex
@article{Ruf2024-12-01contr-71318, title={Gate control of superconducting current : Mechanisms, parameters, and technological potential}, year={2024}, doi={10.1063/5.0222371}, number={4}, volume={11}, journal={Applied Physics Reviews}, author={Ruf, Leon and Puglia, Claudio and Elalaily, Tosson and De Simoni, Giorgio and Joint, Francois and Berke, Martin and Koch, Jennifer and Iorio, Andrea and Khorshidian, Sara and Makk, Peter and Gasparinetti, Simone and Csonka, Szabolcs and Belzig, Wolfgang and Cuoco, Mario and Giazotto, Francesco and Scheer, Elke and Di Bernardo, Angelo}, note={Article Number: 041314} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71318"> <dc:creator>Scheer, Elke</dc:creator> <dc:language>eng</dc:language> <dc:creator>De Simoni, Giorgio</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Koch, Jennifer</dc:contributor> <dc:contributor>Gasparinetti, Simone</dc:contributor> <dc:contributor>Ruf, Leon</dc:contributor> <dc:contributor>Cuoco, Mario</dc:contributor> <dc:contributor>Belzig, Wolfgang</dc:contributor> <dcterms:title>Gate control of superconducting current : Mechanisms, parameters, and technological potential</dcterms:title> <dc:contributor>Csonka, Szabolcs</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71318/1/Ruf_2-1ovs3zcgs5hn3.pdf"/> <dc:creator>Csonka, Szabolcs</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Gasparinetti, Simone</dc:creator> <dc:creator>Koch, Jennifer</dc:creator> <dc:creator>Khorshidian, Sara</dc:creator> <dc:creator>Joint, Francois</dc:creator> <dc:creator>Ruf, Leon</dc:creator> <dc:contributor>Giazotto, Francesco</dc:contributor> <dc:creator>Di Bernardo, Angelo</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71318/1/Ruf_2-1ovs3zcgs5hn3.pdf"/> <dcterms:issued>2024-12-01</dcterms:issued> <dc:creator>Giazotto, Francesco</dc:creator> <dc:contributor>De Simoni, Giorgio</dc:contributor> <dc:contributor>Joint, Francois</dc:contributor> <dc:contributor>Di Bernardo, Angelo</dc:contributor> <dc:creator>Makk, Peter</dc:creator> <dc:creator>Elalaily, Tosson</dc:creator> <dc:creator>Berke, Martin</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-18T14:43:57Z</dcterms:available> <dc:contributor>Makk, Peter</dc:contributor> <dc:creator>Cuoco, Mario</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Puglia, Claudio</dc:creator> <dc:contributor>Puglia, Claudio</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-18T14:43:57Z</dc:date> <dc:contributor>Iorio, Andrea</dc:contributor> <dc:creator>Belzig, Wolfgang</dc:creator> <dc:contributor>Berke, Martin</dc:contributor> <dc:contributor>Scheer, Elke</dc:contributor> <dc:contributor>Elalaily, Tosson</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71318"/> <dc:contributor>Khorshidian, Sara</dc:contributor> <dc:creator>Iorio, Andrea</dc:creator> <dcterms:abstract>In conventional metal-oxide semiconductor (CMOS) electronics, the logic state of a device is set by a gate voltage (VG). The superconducting equivalent of such effect had remained unknown until it was recently shown that a VG can tune the superconducting current (supercurrent) flowing through a nanoconstriction in a superconductor. This gate-controlled supercurrent (GCS) can lead to superconducting logics like CMOS logics, but with lower energy dissipation. The physical mechanism underlying the GCS, however, remains under debate. In this review article, we illustrate the main mechanisms proposed for the GCS, and the material and device parameters that mostly affect it based on the evidence reported. We conclude that different mechanisms are at play in the different studies reported so far. We then outline studies that can help answer open questions on the effect and achieve control over it, which is key for applications. We finally give insights into the impact that the GCS can have toward high-performance computing with low-energy dissipation and quantum technologies.</dcterms:abstract> </rdf:Description> </rdf:RDF>