Publikation: A Concept of Full Plant Morphology Modeling for Robot-Plant Bio-Hybrids
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Robot-plant bio-hybrid systems are getting increasing attention due to the wide range of applications they offer. Such synergies between robots and natural plants will allow, for example, establishing highly reliable environmental monitoring systems or growing the architecture of our future cities. We explore the latter application where robots exploit the plants’ ability to produce construction material, and plants exploit the robots’ sensing and computational capabilities. In our previous work, we used machine learning techniques to model plant behavior in their early life stages. We collected a 10-point plant stem description dataset and used it to train an LSTM as a forward model that predicts plant dynamics and drives the evolution of plant shaping controllers. Here, we show our vision to model plant behaviors in later stages, where full-plant morphology will be used to train state-of-the-art sequence modeling networks capable of simulating more complex plant dynamics.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WAHBY, Mostafa, Julian PETZOLD, Heiko HAMANN, 2021. A Concept of Full Plant Morphology Modeling for Robot-Plant Bio-Hybrids. ALIFE 2021 : The 2021 Conference on Artificial Life (online), 19. Juli 2021 - 23. Juli 2021. In: ČEJKOVÁ, Jitka, ed., Silvia HOLLER, ed., Lisa SOROS, ed. and others. ALIFE 2021 : Proceedings of the Artificial Life Conference 2021. Cambridge, Massachusetts: MIT Press, 2021, pp. 176-178. Available under: doi: 10.1162/isal_a_00445BibTex
@inproceedings{Wahby2021Conce-59733, year={2021}, doi={10.1162/isal_a_00445}, title={A Concept of Full Plant Morphology Modeling for Robot-Plant Bio-Hybrids}, publisher={MIT Press}, address={Cambridge, Massachusetts}, booktitle={ALIFE 2021 : Proceedings of the Artificial Life Conference 2021}, pages={176--178}, editor={Čejková, Jitka and Holler, Silvia and Soros, Lisa}, author={Wahby, Mostafa and Petzold, Julian and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59733"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59733/1/Wahby_2-1pgimzur86rr1.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Petzold, Julian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59733"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T13:34:15Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Robot-plant bio-hybrid systems are getting increasing attention due to the wide range of applications they offer. Such synergies between robots and natural plants will allow, for example, establishing highly reliable environmental monitoring systems or growing the architecture of our future cities. We explore the latter application where robots exploit the plants’ ability to produce construction material, and plants exploit the robots’ sensing and computational capabilities. In our previous work, we used machine learning techniques to model plant behavior in their early life stages. We collected a 10-point plant stem description dataset and used it to train an LSTM as a forward model that predicts plant dynamics and drives the evolution of plant shaping controllers. Here, we show our vision to model plant behaviors in later stages, where full-plant morphology will be used to train state-of-the-art sequence modeling networks capable of simulating more complex plant dynamics.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T13:34:15Z</dc:date> <dcterms:title>A Concept of Full Plant Morphology Modeling for Robot-Plant Bio-Hybrids</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Wahby, Mostafa</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Hamann, Heiko</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59733/1/Wahby_2-1pgimzur86rr1.pdf"/> <dc:creator>Wahby, Mostafa</dc:creator> <dc:creator>Hamann, Heiko</dc:creator> <dc:creator>Petzold, Julian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2021</dcterms:issued> </rdf:Description> </rdf:RDF>