Publikation:

A Taxonomy of Visual Cluster Separation Factors

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Sedlmair, Michael
Munzner, Tamara
Tory, Melanie

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. 2012, 31(3pt4), pp. 1335-1344. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/j.1467-8659.2012.03125.x

Zusammenfassung

We provide two contributions, a taxonomy of visual cluster separation factors in scatterplots, and an in-depth qualitative evaluation of two recently proposed and validated separation measures. We initially intended to use these measures to provide guidance for the use of dimension reduction (DR) techniques and visual encoding (VE) choices, but found that they failed to produce reliable results. To understand why, we conducted a systematic qualitative data study covering a broad collection of 75 real and synthetic high-dimensional datasets, four DR techniques, and three scatterplot-based visual encodings. Two authors visually inspected over 800 plots to determine whether or not the measures created plausible results. We found that they failed in over half the cases overall, and in over two-thirds of the cases involving real datasets. Using open and axial coding of failure reasons and separability characteristics, we generated a taxonomy of visual cluster separability factors. We iteratively refined its explanatory clarity and power by mapping the studied datasets and success and failure ranges of the measures onto the factor axes. Our taxonomy has four categories, ordered by their ability to influence successors: Scale, Point Distance, Shape, and Position. Each category is split into Within-Cluster factors such as density, curvature, isotropy, and clumpiness, and Between-Cluster factors that arise from the variance of these properties, culminating in the overarching factor of class separation. The resulting taxonomy can be used to guide the design and the evaluation of cluster separation measures.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SEDLMAIR, Michael, Andrada TATU, Tamara MUNZNER, Melanie TORY, 2012. A Taxonomy of Visual Cluster Separation Factors. In: Computer Graphics Forum. 2012, 31(3pt4), pp. 1335-1344. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/j.1467-8659.2012.03125.x
BibTex
@article{Sedlmair2012Taxon-22566,
  year={2012},
  doi={10.1111/j.1467-8659.2012.03125.x},
  title={A Taxonomy of Visual Cluster Separation Factors},
  number={3pt4},
  volume={31},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={1335--1344},
  author={Sedlmair, Michael and Tatu, Andrada and Munzner, Tamara and Tory, Melanie}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22566">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-28T09:11:01Z</dcterms:available>
    <dc:creator>Tory, Melanie</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dc:contributor>Munzner, Tamara</dc:contributor>
    <dcterms:issued>2012</dcterms:issued>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>Computer Graphics Forum ; 31 (2012), 3pt4. - S. 1335-1344</dcterms:bibliographicCitation>
    <dc:contributor>Tatu, Andrada</dc:contributor>
    <dc:contributor>Tory, Melanie</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-28T09:11:01Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">We provide two contributions, a taxonomy of visual cluster separation factors in scatterplots, and an in-depth qualitative evaluation of two recently proposed and validated separation measures. We initially intended to use these measures to provide guidance for the use of dimension reduction (DR) techniques and visual encoding (VE) choices, but found that they failed to produce reliable results. To understand why, we conducted a systematic qualitative data study covering a broad collection of 75 real and synthetic high-dimensional datasets, four DR techniques, and three scatterplot-based visual encodings. Two authors visually inspected over 800 plots to determine whether or not the measures created plausible results. We found that they failed in over half the cases overall, and in over two-thirds of the cases involving real datasets. Using open and axial coding of failure reasons and separability characteristics, we generated a taxonomy of visual cluster separability factors. We iteratively refined its explanatory clarity and power by mapping the studied datasets and success and failure ranges of the measures onto the factor axes. Our taxonomy has four categories, ordered by their ability to influence successors: Scale, Point Distance, Shape, and Position. Each category is split into Within-Cluster factors such as density, curvature, isotropy, and clumpiness, and Between-Cluster factors that arise from the variance of these properties, culminating in the overarching factor of class separation. The resulting taxonomy can be used to guide the design and the evaluation of cluster separation measures.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22566"/>
    <dcterms:title>A Taxonomy of Visual Cluster Separation Factors</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Tatu, Andrada</dc:creator>
    <dc:creator>Munzner, Tamara</dc:creator>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen