Publikation:

Visual interaction to solving complex optimization problems

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2003

Autor:innen

Hinneburg, Alexander

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

POST, Frits H., ed. and others. Data Visualization : The State of the Art. Boston: Kluwer Academic Publishers, 2003, pp. 407-422. ISBN 1-4020-7259-7

Zusammenfassung

Many real world problems can be described as complex optimization problems. Some of them can be easily formalized and are amenable to an automated solution using some (usually heuristic) optimization algorithm. Other complex problems can not be solved satisfactory by automated algorithms. The reason is that the problems and the corresponding optimization goals can either not be fully formalized or that they vary depending on the user and the task at hand. In both cases, there is no chance to obtain a fully automatic solution of the problem. The only possibility is to make the user an integral part of the process. In this article, we therefore propose an interactive optimization system based on visualization techniques to guide the optimization process of heuristic optimization algorithms. To show the usefulness of our ideas, we provide two example applications: First, we apply the idea in the framework of similarity search in multimedia databases. Since it is difficult to specify the search task, we use visualization techniques to allow an interactive specification. As basis for the automated optimization we use a genetic algorithm. Instead of having an a-priori fully-specified fitness function, however, we let the user interactively determine the fitness of intermediate results based on visualizations of the data. In this way, an optimization with user-dependent and changing optimization goals is possible. The second example is a typical complex optimization problem - the time tabling problem. In most instantiations of the problem, it is not possible to completely specify all constraints, especially the potentially very large number of dependencies and soft constraints. In this application example, we also use visualization techniques in combination with automated optimization to improve the obtained solutions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HINNEBURG, Alexander, Daniel A. KEIM, 2003. Visual interaction to solving complex optimization problems. In: POST, Frits H., ed. and others. Data Visualization : The State of the Art. Boston: Kluwer Academic Publishers, 2003, pp. 407-422. ISBN 1-4020-7259-7
BibTex
@incollection{Hinneburg2003Visua-40848,
  year={2003},
  title={Visual interaction to solving complex optimization problems},
  isbn={1-4020-7259-7},
  publisher={Kluwer Academic Publishers},
  address={Boston},
  booktitle={Data Visualization : The State of the Art},
  pages={407--422},
  editor={Post, Frits H.},
  author={Hinneburg, Alexander and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40848">
    <dc:creator>Hinneburg, Alexander</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Visual interaction to solving complex optimization problems</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-06T08:08:00Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Hinneburg, Alexander</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40848"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Many real world problems can be described as complex optimization problems. Some of them can be easily formalized and are amenable to an automated solution using some (usually heuristic) optimization algorithm. Other complex problems can not be solved satisfactory by automated algorithms. The reason is that the problems and the corresponding optimization goals can either not be fully formalized or that they vary depending on the user and the task at hand. In both cases, there is no chance to obtain a fully automatic solution of the problem. The only possibility is to make the user an integral part of the process. In this article, we therefore propose an interactive optimization system based on visualization techniques to guide the optimization process of heuristic optimization algorithms. To show the usefulness of our ideas, we provide two example applications: First, we apply the idea in the framework of similarity search in multimedia databases. Since it is difficult to specify the search task, we use visualization techniques to allow an interactive specification. As basis for the automated optimization we use a genetic algorithm. Instead of having an a-priori fully-specified fitness function, however, we let the user interactively determine the fitness of intermediate results based on visualizations of the data. In this way, an optimization with user-dependent and changing optimization goals is possible. The second example is a typical complex optimization problem - the time tabling problem. In most instantiations of the problem, it is not possible to completely specify all constraints, especially the potentially very large number of dependencies and soft constraints. In this application example, we also use visualization techniques in combination with automated optimization to improve the obtained solutions.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2003</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-06T08:08:00Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen