Publikation:

An inflated multivariate integer count hurdle model : an application to bid and ask quote dynamics

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Bien, Katarzyna
Nolte, Ingmar

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Applied Econometrics. 2011, 26(4), pp. 669-707. ISSN 0883-7252. Available under: doi: 10.1002/jae.1122

Zusammenfassung

In this paper we develop a model for the conditional inflated multivariate density of integer count variables with domain ℤn, n ∈ ℕ. Our modelling framework is based on a copula approach and can be used for a broad set of applications where the primary characteristics of the data are: (i) discrete domain; (ii) the tendency to cluster at certain outcome values; and (iii) contemporaneous dependence. These kinds of properties can be found for high- or ultra-high-frequency data describing the trading process on financial markets. We present a straightforward sampling method for such an inflated multivariate density through the application of an independence Metropolis–Hastings sampling algorithm. We demonstrate the power of our approach by modelling the conditional bivariate density of bid and ask quote changes in a high-frequency setup. We show how to derive the implied conditional discrete density of the bid–ask spread, taking quote clusterings (at multiples of 5 ticks) into account.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BIEN, Katarzyna, Ingmar NOLTE, Winfried POHLMEIER, 2011. An inflated multivariate integer count hurdle model : an application to bid and ask quote dynamics. In: Journal of Applied Econometrics. 2011, 26(4), pp. 669-707. ISSN 0883-7252. Available under: doi: 10.1002/jae.1122
BibTex
@article{Bien2011infla-19100,
  year={2011},
  doi={10.1002/jae.1122},
  title={An inflated multivariate integer count hurdle model : an application to bid and ask quote dynamics},
  number={4},
  volume={26},
  issn={0883-7252},
  journal={Journal of Applied Econometrics},
  pages={669--707},
  author={Bien, Katarzyna and Nolte, Ingmar and Pohlmeier, Winfried}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19100">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-02T08:27:40Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19100"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Nolte, Ingmar</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:title>An inflated multivariate integer count hurdle model : an application to bid and ask quote dynamics</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Pohlmeier, Winfried</dc:creator>
    <dc:contributor>Pohlmeier, Winfried</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Nolte, Ingmar</dc:contributor>
    <dc:creator>Bien, Katarzyna</dc:creator>
    <dc:contributor>Bien, Katarzyna</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-02T08:27:40Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">In this paper we develop a model for the conditional inflated multivariate density of integer count variables with domain ℤn, n ∈ ℕ. Our modelling framework is based on a copula approach and can be used for a broad set of applications where the primary characteristics of the data are: (i) discrete domain; (ii) the tendency to cluster at certain outcome values; and (iii) contemporaneous dependence. These kinds of properties can be found for high- or ultra-high-frequency data describing the trading process on financial markets. We present a straightforward sampling method for such an inflated multivariate density through the application of an independence Metropolis–Hastings sampling algorithm. We demonstrate the power of our approach by modelling the conditional bivariate density of bid and ask quote changes in a high-frequency setup. We show how to derive the implied conditional discrete density of the bid–ask spread, taking quote clusterings (at multiples of 5 ticks) into account.</dcterms:abstract>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:bibliographicCitation>Publ. in: Journal of Applied Econometrics ; 26 (2011), 4. - pp. 669-707</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen