Publikation:

Spatio-Temporal Clustering Benchmark for Collective Animal Behavior

Lade...
Vorschaubild

Dateien

Cakmak_2-2d9csrykklqw0.pdf
Cakmak_2-2d9csrykklqw0.pdfGröße: 192.13 KBDownloads: 182

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility (HANIMOB’21),. New York, NY: ACM, 2021. Available under: doi: 10.1145/3486637.3489487

Zusammenfassung

Various spatio-temporal clustering methods have been proposed to detect groups of jointly moving objects in space and time. However, such spatio-temporal clustering methods are rarely compared against each other to evaluate their performance in discovering moving clusters. Hence, in this work, we present a spatio-temporal clustering benchmark for the field of collective animal behavior. Our reproducible benchmark proposes synthetic datasets with ground truth and scalable implementations of spatio-temporal clustering methods. The benchmark reveals that temporal extensions of standard clustering algorithms are inherently useful for the scalable detection of moving clusters in collective animal behavior.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Spatio-Temporal Clustering, Trajectory Clustering, Benchmark, Moving Clusters, Collective Animal Behavior

Konferenz

1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility (HANIMOB’21), 2. Nov. 2021, Beijing, China
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CAKMAK, Eren, Manuel PLANK, Daniel S. CALOVI, Alex JORDAN, Daniel A. KEIM, 2021. Spatio-Temporal Clustering Benchmark for Collective Animal Behavior. 1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility (HANIMOB’21). Beijing, China, 2. Nov. 2021. In: 1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility (HANIMOB’21),. New York, NY: ACM, 2021. Available under: doi: 10.1145/3486637.3489487
BibTex
@inproceedings{Cakmak2021Spati-55277,
  year={2021},
  doi={10.1145/3486637.3489487},
  title={Spatio-Temporal Clustering Benchmark for Collective Animal Behavior},
  publisher={ACM},
  address={New York, NY},
  booktitle={1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility (HANIMOB’21),},
  author={Cakmak, Eren and Plank, Manuel and Calovi, Daniel S. and Jordan, Alex and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55277">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-18T14:14:23Z</dc:date>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Calovi, Daniel S.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-18T14:14:23Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Various spatio-temporal clustering methods have been proposed to detect groups of jointly moving objects in space and time. However, such spatio-temporal clustering methods are rarely compared against each other to evaluate their performance in discovering moving clusters. Hence, in this work, we present a spatio-temporal clustering benchmark for the field of collective animal behavior. Our reproducible benchmark proposes synthetic datasets with ground truth and scalable implementations of spatio-temporal clustering methods. The benchmark reveals that temporal extensions of standard clustering algorithms are inherently useful for the scalable detection of moving clusters in collective animal behavior.</dcterms:abstract>
    <dc:contributor>Jordan, Alex</dc:contributor>
    <dc:creator>Plank, Manuel</dc:creator>
    <dcterms:title>Spatio-Temporal Clustering Benchmark for Collective Animal Behavior</dcterms:title>
    <dc:contributor>Plank, Manuel</dc:contributor>
    <dc:creator>Jordan, Alex</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Cakmak, Eren</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55277"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Calovi, Daniel S.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55277/1/Cakmak_2-2d9csrykklqw0.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55277/1/Cakmak_2-2d9csrykklqw0.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2021</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen