Publikation:

Fuzzy Models and Potential Outliers

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

1999

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397). IEEE, 1999, pp. 532-535. ISBN 0-7803-5211-4. Available under: doi: 10.1109/NAFIPS.1999.781750

Zusammenfassung

Outliers or distorted attributes very often severely interfere with data analysis algorithms that try to extract few meaningful rules. Most methods to deal with outliers try to completely ignore them. This can be potentially harmful since the very outlier that was ignored might have described a rare but still extremely interesting phenomena. We describe an approach that tries to build an interpretable model while still maintaining all the information in the data. This is achieved through a two stage process. A first phase builds an outlier model for data points of low relevance, followed by a second stage which uses this model as filter and generates a simpler model, describing only examples with higher relevance, thus representing a more general concept. The outlier model on the other hand may point out potential areas of interest to the user. Preliminary experiments using an existing algorithm to construct fuzzy rule sets from data indicate that the two models in fact have lower complexity and sometimes even offer superior performance.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

NAFIPS-99: 18th International Conference of the North American Fuzzy Information Processing Society, New York, NY, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERTHOLD, Michael R., 1999. Fuzzy Models and Potential Outliers. NAFIPS-99: 18th International Conference of the North American Fuzzy Information Processing Society. New York, NY, USA. In: 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397). IEEE, 1999, pp. 532-535. ISBN 0-7803-5211-4. Available under: doi: 10.1109/NAFIPS.1999.781750
BibTex
@inproceedings{Berthold1999Fuzzy-24297,
  year={1999},
  doi={10.1109/NAFIPS.1999.781750},
  title={Fuzzy Models and Potential Outliers},
  isbn={0-7803-5211-4},
  publisher={IEEE},
  booktitle={18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)},
  pages={532--535},
  author={Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24297">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T06:18:43Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Outliers or distorted attributes very often severely interfere with data analysis algorithms that try to extract few meaningful rules. Most methods to deal with outliers try to completely ignore them. This can be potentially harmful since the very outlier that was ignored might have described a rare but still extremely interesting phenomena. We describe an approach that tries to build an interpretable model while still maintaining all the information in the data. This is achieved through a two stage process. A first phase builds an outlier model for data points of low relevance, followed by a second stage which uses this model as filter and generates a simpler model, describing only examples with higher relevance, thus representing a more general concept. The outlier model on the other hand may point out potential areas of interest to the user. Preliminary experiments using an existing algorithm to construct fuzzy rule sets from data indicate that the two models in fact have lower complexity and sometimes even offer superior performance.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24297"/>
    <dcterms:issued>1999</dcterms:issued>
    <dcterms:bibliographicCitation>18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (North American Fuzzy Information Processing Society) : June 10-12, 1999, New York, USA / ed. by Rajesh N. Davé, Thomas Sudkamp. - Piscataway, N.J. : IEEE Service Center, 1999. - S. 532-535. - ISBN 0-7803-5211-4</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Fuzzy Models and Potential Outliers</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T06:18:43Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen