Publikation: Fuzzy Models and Potential Outliers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Outliers or distorted attributes very often severely interfere with data analysis algorithms that try to extract few meaningful rules. Most methods to deal with outliers try to completely ignore them. This can be potentially harmful since the very outlier that was ignored might have described a rare but still extremely interesting phenomena. We describe an approach that tries to build an interpretable model while still maintaining all the information in the data. This is achieved through a two stage process. A first phase builds an outlier model for data points of low relevance, followed by a second stage which uses this model as filter and generates a simpler model, describing only examples with higher relevance, thus representing a more general concept. The outlier model on the other hand may point out potential areas of interest to the user. Preliminary experiments using an existing algorithm to construct fuzzy rule sets from data indicate that the two models in fact have lower complexity and sometimes even offer superior performance.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., 1999. Fuzzy Models and Potential Outliers. NAFIPS-99: 18th International Conference of the North American Fuzzy Information Processing Society. New York, NY, USA. In: 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397). IEEE, 1999, pp. 532-535. ISBN 0-7803-5211-4. Available under: doi: 10.1109/NAFIPS.1999.781750BibTex
@inproceedings{Berthold1999Fuzzy-24297, year={1999}, doi={10.1109/NAFIPS.1999.781750}, title={Fuzzy Models and Potential Outliers}, isbn={0-7803-5211-4}, publisher={IEEE}, booktitle={18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)}, pages={532--535}, author={Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24297"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T06:18:43Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Outliers or distorted attributes very often severely interfere with data analysis algorithms that try to extract few meaningful rules. Most methods to deal with outliers try to completely ignore them. This can be potentially harmful since the very outlier that was ignored might have described a rare but still extremely interesting phenomena. We describe an approach that tries to build an interpretable model while still maintaining all the information in the data. This is achieved through a two stage process. A first phase builds an outlier model for data points of low relevance, followed by a second stage which uses this model as filter and generates a simpler model, describing only examples with higher relevance, thus representing a more general concept. The outlier model on the other hand may point out potential areas of interest to the user. Preliminary experiments using an existing algorithm to construct fuzzy rule sets from data indicate that the two models in fact have lower complexity and sometimes even offer superior performance.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24297"/> <dcterms:issued>1999</dcterms:issued> <dcterms:bibliographicCitation>18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (North American Fuzzy Information Processing Society) : June 10-12, 1999, New York, USA / ed. by Rajesh N. Davé, Thomas Sudkamp. - Piscataway, N.J. : IEEE Service Center, 1999. - S. 532-535. - ISBN 0-7803-5211-4</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:contributor>Berthold, Michael R.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Fuzzy Models and Potential Outliers</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T06:18:43Z</dcterms:available> </rdf:Description> </rdf:RDF>