Publikation:

Domain Wall Dynamics in Magnetic Nanostructures

Lade...
Vorschaubild

Dateien

Bedau_Diss.pdf
Bedau_Diss.pdfGröße: 6.86 MBDownloads: 801

Datum

2008

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

978-3-89963-716-8
Bibliografische Daten

Verlag

[S.l.] : Dr. Hut

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Domänenwanddynamik in magnetischen Nanostrukturen
Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We have investigated the pinning of laterally confined head-to-head domain walls at constrictions. The experiments provide insight into the static properties of pinned domain walls. We found that position, extent, and pinning strength can be reliably determined by transport measurements. The position of the domain walls inside the pinning potential has been determined from the angular dependence of the depinning field, and we found that transverse walls are pinned symmetrically inside the notch whereas vortex walls are pinned on either side, but repelled from the centre of the notch. Both domain wall types can be stable in different regions of the same sample, if one tries to lift the vortex wall over the barrier separating the two individual potential wells, the wall is eventually transformed into a transverse wall which stays pinned inside the notch [KVW+04]. Depinning measurements constitute a solid base for understanding the potential landscape around a constriction and are sufficiently understood to be used as a tool to gain further insight into dynamic processes.
The results of our combined current- and field- induced domain wall propagation experiments at different temperatures provide insight into the interplay between the adiabatic and non-adiabatic spin-transfer torque terms and thermal effects. We could demonstrate the importance of thermal activations for the current- and field-induced case: while for purely field-induced domain wall propagation the field threshold is always lowered for increasing temperatures, the current threshold shows a non-monotonous dependence on the temperature.
Even though we could confirm purely current driven domain wall propagation, we found an intrinsic dependency of the spin-torque efficiency on the temperature which has the opposite trend as expected from the simple theory, pointing to the need of further theoretical studies. Having determined width and depth of the pinning potential and the interaction with currents, we have performed domain wall excitation experiments with AC currents and showed that domain walls can be described as quasiparticles with an effective mass, oscillating in the pinning potential. We have presented a novel physical effect, the homodyne rectification of AC currents by oscillating domain walls, which we explained by micromagnetic simulations and a harmonic oscillator model. The results obtained using homodyne rectification have been confirmed by a second independent method, the depinning spectroscopy. It was found that the homodyne detection is much faster and additionally offers a higher frequency resolution than the depinning spectroscopy.
The homodyne detection method has the additional advantage that the parameters power, temperature and external field can be varied and thus their influence on the domain wall resonance and on the underlying potential well shape can be studied. We presented a fast and reliable method based on the homodyne detection to determine the polarity of vortex cores, demonstrating an inversion of the vortex core polarity using out-of-plane magnetic fields and resonant microwave pulses. The homodyne detection technique was used to directly measure the local profile of a symmetric pinning potential, and an experiment has been proposed to completely chart an asymmetric pinning potential.

Zusammenfassung in einer weiteren Sprache

In dieser Arbeit wird das dynamische Verhalten von magnetischen Domänenwänden in lateral eingeschränkten magnetischen Nanostrukturen aus Permalloy untersucht.
Für diese Messungen wird ein Hochfrequenzkryomagnetsystem benötigt, dessen Entwurf und Aufbau beschrieben werden. Das Kryomagnetsystem ermöglicht es, Proben bei Temperaturen von 2 K bis zu 500 K im Frequenzbereich von DC bis zu 20 GHz zu untersuchen und dabei Magnetfelder von bis zu 0.5 T unter beliebigen Winkeln in der Probenebene anzulegen.
Zunächst werden die statischen Eigenschaften der durch Kerben in den Nanostrukturen erzeugten Domänenwand-Pinningpotentiale bestimmt. Aus der Winkelabhängigkeit des Depinningfeldes werden die Positionen von Vortexwänden und von Transversalwänden in den Potentialmulden bestimmt und die Ergebnisse mit mikromagnetischen Simulationen verglichen. Die kritischen Stromdichten und Feldstärken der strom- und feldinduzierten Domänenwandpropagation werden für Systeme mit und ohne Kerben bestimmt. Der Einfluß der Temperatur auf die kritischen Stromdichten und Feldstärken wird untersucht und mit Voraussagen der Spintransfertheorie verglichen.
Es wird gezeigt, daß Domänenwände unter gewissen Voraussetzungen als Quasiteilchen beschrieben werden können, die sich in einer durch Konstriktionen und Defekte erzeugten Potentiallandschaft bewegen. Den Domänenwand-Quasiteilchen kann eine effektive träge Masse zugeordnet werden: eine gepinnte Domänenwand kann zu Schwingungen angeregt werden. Ein neuartiger physikalischer Effekt, die homodyne Gleichrichtung an schwingenden Domänenwänden, wird vorgestellt. Die homodyne Gleichrichtung ist ein empfindlicher Indikator der Schwingungsamplitude und ermöglicht eine genaue Vermessung der Domänenwandresonanzspektren in einem weiten Parameterbereich an Magnetfeldern, Temperaturen und Leistungen. Die so gewonnenen Eigenfrequenzen werden mit Werten verglichen, die aus Depinningspektren erhalten wurden.
Die Gleichrichtungsspektren weisen eine charakteristische Linienform auf, die in mikromagnetischen Rechnungen reproduziert werden konnte. Aus der Linienform läßt sich die Polarität der Vortexkerne bestimmen und es wird gezeigt, daß sich die Vortexkerne bei resonanter Anregung mit sehr kleinen Magnetfeldern schalten lassen.Aus der Abhängigkeit der Depinningspektren von der angelegten Anregungsleistung wird die Form des Pinningpotentials für ein symmetrisches Pinningzentrum bestimmt, und es wird gezeigt, daß sich durch Einführen einer zusätzlichen Zeemanenergie beliebige Potentialformen quantitativ bestimmen lassen.
Um die Nukleation von Domänenwänden zu untersuchen, werden dynamische XMCD-PEEM Untersuchungen an Permalloyringen durchgeführt. Es wird gezeigt, daß sowohl Saturierung als auch Nukleation sehr schnelle Prozesse sind, die in unter 100 ps ablaufen.

Fachgebiet (DDC)
530 Physik

Schlagwörter

magnetic domain wall, spin transfer torque, spin dynamics, spin rectification

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEDAU, Daniel, 2008. Domain Wall Dynamics in Magnetic Nanostructures [Dissertation]. Konstanz: University of Konstanz. [S.l.] : Dr. Hut. ISBN 978-3-89963-716-8
BibTex
@phdthesis{Bedau2008Domai-5200,
  year={2008},
  publisher={[S.l.] : Dr. Hut},
  title={Domain Wall Dynamics in Magnetic Nanostructures},
  author={Bedau, Daniel},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5200">
    <dc:contributor>Bedau, Daniel</dc:contributor>
    <dcterms:issued>2008</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We have investigated the pinning of laterally confined head-to-head domain walls at constrictions. The experiments provide insight into the static properties of pinned domain walls. We found that position, extent, and pinning strength can be reliably determined by transport measurements. The position of the domain walls inside the pinning potential has been determined from the angular dependence of the depinning field, and we found that transverse walls are pinned symmetrically inside the notch whereas vortex walls are pinned on either side, but repelled from the centre of the notch. Both domain wall types can be stable in different regions of the same sample, if one tries to lift the vortex wall over the barrier separating the two individual potential wells, the wall is eventually transformed into a transverse wall which stays pinned inside the notch [KVW+04]. Depinning measurements constitute a solid base for understanding the potential landscape around a constriction and are sufficiently understood to be used as a tool to gain further insight into dynamic processes.&lt;br /&gt;The results of our combined current- and field- induced domain wall propagation experiments at different temperatures provide insight into the interplay between the adiabatic and non-adiabatic spin-transfer torque terms and thermal effects. We could demonstrate the importance of thermal activations for the current- and field-induced case: while for purely field-induced domain wall propagation the field threshold is always lowered for increasing temperatures, the current threshold shows a non-monotonous dependence on the temperature.&lt;br /&gt;Even though we could confirm purely current driven domain wall propagation, we found an intrinsic dependency of the spin-torque efficiency on the temperature which has the opposite trend as expected from the simple theory, pointing to the need of further theoretical studies. Having determined width and depth of the pinning potential and the interaction with currents, we have performed domain wall excitation experiments with AC currents and showed that domain walls can be described as quasiparticles with an effective mass, oscillating in the pinning potential. We have presented a novel physical effect, the homodyne rectification of AC currents by oscillating domain walls, which we explained by micromagnetic simulations and a harmonic oscillator model. The results obtained using homodyne rectification have been confirmed by a second independent method, the depinning spectroscopy. It was found that the homodyne detection is much faster and additionally offers a higher frequency resolution than the depinning spectroscopy.&lt;br /&gt;The homodyne detection method has the additional advantage that the parameters power, temperature and external field can be varied and thus their influence on the domain wall resonance and on the underlying potential well shape can be studied. We presented a fast and reliable method based on the homodyne detection to determine the polarity of vortex cores, demonstrating an inversion of the vortex core polarity using out-of-plane magnetic fields and resonant microwave pulses. The homodyne detection technique was used to directly measure the local profile of a symmetric pinning potential, and an experiment has been proposed to completely chart an asymmetric pinning potential.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5200"/>
    <dcterms:alternative>Domänenwanddynamik in magnetischen Nanostrukturen</dcterms:alternative>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5200/1/Bedau_Diss.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:title>Domain Wall Dynamics in Magnetic Nanostructures</dcterms:title>
    <dc:publisher>[S.l.] : Dr. Hut</dc:publisher>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5200/1/Bedau_Diss.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:language>eng</dc:language>
    <dc:creator>Bedau, Daniel</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:53:57Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:53:57Z</dcterms:available>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <bibo:issn>978-3-89963-716-8</bibo:issn>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

February 20, 2008
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen