Publikation:

ART-based Neural Networks for Multi-Label Classification

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2009

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ADAMS, Niall M., ed., Céline ROBARDET, ed., Arno SIEBES, ed., Jean-François BOULICAUT, ed.. Advances in Intelligent Data Analysis VIII. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 167-177. Lecture Notes in Computer Science. 5772. ISBN 978-3-642-03914-0. Available under: doi: 10.1007/978-3-642-03915-7_15

Zusammenfassung

Multi-label classification is an active and rapidly developing research area of data analysis. It becomes increasingly important in such fields as gene function prediction, text classification or web mining. This task corresponds to classification of instances labeled by multiple classes rather than just one. Traditionally, it was solved by learning independent binary classifiers for each class and combining their outputs to obtain multi-label predictions. Alternatively, a classifier can be directly trained to predict a label set of an unknown size for each unseen instance. Recently, several direct multi-label machine learning algorithms have been proposed. This paper presents a novel approach based on ART (Adaptive Resonance Theory) neural networks. The Fuzzy ARTMAP and ARAM algorithms were modified in order to improve their multi-label classification performance and were evaluated on benchmark datasets. Comparison of experimental results with the results of other multi-label classifiers shows the effectiveness of the proposed approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Classification, Data Analysis, Neural Network

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SAPOZHNIKOVA, Elena, 2009. ART-based Neural Networks for Multi-Label Classification. In: ADAMS, Niall M., ed., Céline ROBARDET, ed., Arno SIEBES, ed., Jean-François BOULICAUT, ed.. Advances in Intelligent Data Analysis VIII. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 167-177. Lecture Notes in Computer Science. 5772. ISBN 978-3-642-03914-0. Available under: doi: 10.1007/978-3-642-03915-7_15
BibTex
@inproceedings{Sapozhnikova2009ARTba-2994,
  year={2009},
  doi={10.1007/978-3-642-03915-7_15},
  title={ART-based Neural Networks for Multi-Label Classification},
  number={5772},
  isbn={978-3-642-03914-0},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Lecture Notes in Computer Science},
  booktitle={Advances in Intelligent Data Analysis VIII},
  pages={167--177},
  editor={Adams, Niall M. and Robardet, Céline and Siebes, Arno and Boulicaut, Jean-François},
  author={Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/2994">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Multi-label classification is an active and rapidly developing research area of data analysis. It becomes increasingly important in such fields as gene function prediction, text classification or web mining. This task corresponds to classification of instances labeled by multiple classes rather than just one. Traditionally, it was solved by learning independent binary classifiers for each class and combining their outputs to obtain multi-label predictions. Alternatively, a classifier can be directly trained to predict a label set of an unknown size for each unseen instance. Recently, several direct multi-label machine learning algorithms have been proposed. This paper presents a novel approach based on ART (Adaptive Resonance Theory) neural networks. The Fuzzy ARTMAP and ARAM algorithms were modified in order to improve their multi-label classification performance and were evaluated on benchmark datasets. Comparison of experimental results with the results of other multi-label classifiers shows the effectiveness of the proposed approach.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:40Z</dcterms:available>
    <dcterms:title>ART-based Neural Networks for Multi-Label Classification</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:bibliographicCitation>First publ. in: Advances in Intelligent Data Analysis VIII : 8th International Symposium on Intelligent Data Analysis, IDA 2009, Lyon, France, August 31 - September 2, 2009 / Niall M. Adams ... (eds.). (= LNCS ; 5772). Berlin : Springer, 2009, pp. 167-177</dcterms:bibliographicCitation>
    <dcterms:issued>2009</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:40Z</dc:date>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/2994"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen