Publikation: Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb NMR spectroscopy
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
One of the key challenges in spectroscopy is inhomogeneous broadening that masks the homogeneous spectral lineshape and the underlying coherent dynamics. A variety of techniques including four-wave mixing and spectral hole-burning are used in optical spectroscopy while in nuclear magnetic resonance (NMR) spin-echo is the most common way to counteract inhomogeneity. However, the high-power pulses used in spin-echo and other sequences often create spurious dynamics obscuring the subtle spin correlations that play a crucial role in quantum information applications. Here we develop NMR techniques that allow the correlation times of the fluctuations in a nuclear spin bath of individual quantum dots to be probed. This is achieved with the use of frequency comb excitation which allows the homogeneous NMR lineshapes to be measured avoiding high-power pulses. We find nuclear spin correlation times exceeding 1 s in self-assembled InGaAs quantum dots - four orders of magnitude longer than in strain-free III-V semiconductors. The observed freezing of the nuclear spin fluctuations opens the way for the design of quantum dot spin qubits with a well-understood, highly stable nuclear spin bath.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WAEBER, Andreas M., Mark HOPKINSON, Ian FARRER, David A. RITCHIE, John NILSSON, R. Mark STEVENSON, Anthony J. BENNETT, Andrew J. SHIELDS, Guido BURKARD, Aleksandr I. TARTAKOVSKII, Maurice S. SKOLNICK, Evgeny A. CHEKHOVICH, 2015. Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb NMR spectroscopyBibTex
@unpublished{Waeber2015Fewse-33447, year={2015}, title={Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb NMR spectroscopy}, author={Waeber, Andreas M. and Hopkinson, Mark and Farrer, Ian and Ritchie, David A. and Nilsson, John and Stevenson, R. Mark and Bennett, Anthony J. and Shields, Andrew J. and Burkard, Guido and Tartakovskii, Aleksandr I. and Skolnick, Maurice S. and Chekhovich, Evgeny A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33447"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ritchie, David A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-24T08:48:27Z</dc:date> <dc:contributor>Shields, Andrew J.</dc:contributor> <dc:creator>Nilsson, John</dc:creator> <dc:creator>Chekhovich, Evgeny A.</dc:creator> <dc:contributor>Skolnick, Maurice S.</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Waeber, Andreas M.</dc:contributor> <dc:contributor>Farrer, Ian</dc:contributor> <dc:contributor>Tartakovskii, Aleksandr I.</dc:contributor> <dc:creator>Shields, Andrew J.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33447"/> <dc:creator>Ritchie, David A.</dc:creator> <dc:creator>Skolnick, Maurice S.</dc:creator> <dc:creator>Hopkinson, Mark</dc:creator> <dcterms:issued>2015</dcterms:issued> <dc:creator>Farrer, Ian</dc:creator> <dc:creator>Bennett, Anthony J.</dc:creator> <dcterms:title>Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb NMR spectroscopy</dcterms:title> <dc:creator>Burkard, Guido</dc:creator> <dc:contributor>Hopkinson, Mark</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-24T08:48:27Z</dcterms:available> <dc:contributor>Bennett, Anthony J.</dc:contributor> <dc:creator>Stevenson, R. Mark</dc:creator> <dc:contributor>Burkard, Guido</dc:contributor> <dc:contributor>Nilsson, John</dc:contributor> <dc:creator>Waeber, Andreas M.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Stevenson, R. Mark</dc:contributor> <dc:creator>Tartakovskii, Aleksandr I.</dc:creator> <dcterms:abstract xml:lang="eng">One of the key challenges in spectroscopy is inhomogeneous broadening that masks the homogeneous spectral lineshape and the underlying coherent dynamics. A variety of techniques including four-wave mixing and spectral hole-burning are used in optical spectroscopy while in nuclear magnetic resonance (NMR) spin-echo is the most common way to counteract inhomogeneity. However, the high-power pulses used in spin-echo and other sequences often create spurious dynamics obscuring the subtle spin correlations that play a crucial role in quantum information applications. Here we develop NMR techniques that allow the correlation times of the fluctuations in a nuclear spin bath of individual quantum dots to be probed. This is achieved with the use of frequency comb excitation which allows the homogeneous NMR lineshapes to be measured avoiding high-power pulses. We find nuclear spin correlation times exceeding 1 s in self-assembled InGaAs quantum dots - four orders of magnitude longer than in strain-free III-V semiconductors. The observed freezing of the nuclear spin fluctuations opens the way for the design of quantum dot spin qubits with a well-understood, highly stable nuclear spin bath.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Chekhovich, Evgeny A.</dc:contributor> </rdf:Description> </rdf:RDF>