Publikation:

Adaptive Disentanglement based on Local Clustering in Small-World Network Visualization

Lade...
Vorschaubild

Dateien

Nocaj_0-324673.pdf
Nocaj_0-324673.pdfGröße: 1.41 MBDownloads: 553

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. 2016, 22(6), pp. 1662-1671. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2016.2534559

Zusammenfassung

Small-world networks have characteristically low pairwise shortest-path distances, causing distance-based layout methods to generate hairball drawings. Recent approaches thus aim at finding a sparser representation of the graph to amplify variations in pairwise distances. Since the effect of sparsification on the layout is difficult to describe analytically, the incorporated filtering parameters of these approaches typically have to be selected manually and individually for each input instance. We here propose the use of graph invariants to determine suitable parameters automatically. This allows us to perform adaptive filtering to obtain drawings in which the cluster structure is most prominent. The approach is based on an empirical relationship between input and output characteristics that is derived from real and synthetic networks.Experimental evaluation shows the effectiveness of our approach and suggests that it can be used by default to increase the robustness of force-directed layout methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690NOCAJ, Arlind, Mark ORTMANN, Ulrik BRANDES, 2016. Adaptive Disentanglement based on Local Clustering in Small-World Network Visualization. In: IEEE Transactions on Visualization and Computer Graphics. 2016, 22(6), pp. 1662-1671. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2016.2534559
BibTex
@article{Nocaj2016-06-01Adapt-33651,
  year={2016},
  doi={10.1109/TVCG.2016.2534559},
  title={Adaptive Disentanglement based on Local Clustering in Small-World Network Visualization},
  number={6},
  volume={22},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={1662--1671},
  author={Nocaj, Arlind and Ortmann, Mark and Brandes, Ulrik}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33651">
    <dc:creator>Ortmann, Mark</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Nocaj, Arlind</dc:contributor>
    <dc:creator>Nocaj, Arlind</dc:creator>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-21T09:24:39Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33651"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2016-06-01</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-21T09:24:39Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33651/1/Nocaj_0-324673.pdf"/>
    <dc:contributor>Ortmann, Mark</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:title>Adaptive Disentanglement based on Local Clustering in Small-World Network Visualization</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33651/1/Nocaj_0-324673.pdf"/>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dcterms:abstract xml:lang="eng">Small-world networks have characteristically low pairwise shortest-path distances, causing distance-based layout methods to generate hairball drawings. Recent approaches thus aim at finding a sparser representation of the graph to amplify variations in pairwise distances. Since the effect of sparsification on the layout is difficult to describe analytically, the incorporated filtering parameters of these approaches typically have to be selected manually and individually for each input instance. We here propose the use of graph invariants to determine suitable parameters automatically. This allows us to perform adaptive filtering to obtain drawings in which the cluster structure is most prominent. The approach is based on an empirical relationship between input and output characteristics that is derived from real and synthetic networks.Experimental evaluation shows the effectiveness of our approach and suggests that it can be used by default to increase the robustness of force-directed layout methods.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen