Publikation:

A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes

Lade...
Vorschaubild

Dateien

Sutter_2-2qrh672wekn48.PDF
Sutter_2-2qrh672wekn48.PDFGröße: 2.18 MBDownloads: 7

Datum

2016

Autor:innen

Ganguly, Arnab
Koeppl, Heinz

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Machine Learning Research. Microtome Publishing. 2016, 17, 190. ISSN 1532-4435. eISSN 1533-7928

Zusammenfassung

We consider a hidden Markov model, where the signal process, given by a diffusion, is only indirectly observed through some noisy measurements. The article develops a variational method for approximating the hidden states of the signal process given the full set of observations. This, in particular, leads to systematic approximations of the smoothing densities of the signal process. The paper then demonstrates how an efficient inference scheme, based on this variational approach to the approximation of the hidden states, can be designed to estimate the unknown parameters of stochastic differential equations. Two examples at the end illustrate the efficacy and the accuracy of the presented method.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Variational inference, stochastic differential equations, diffusion processes, hidden Markov model, optimal control

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SUTTER, Tobias, Arnab GANGULY, Heinz KOEPPL, 2016. A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes. In: Journal of Machine Learning Research. Microtome Publishing. 2016, 17, 190. ISSN 1532-4435. eISSN 1533-7928
BibTex
@article{Sutter2016Varia-55732,
  year={2016},
  title={A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes},
  url={https://jmlr.csail.mit.edu/papers/v17/16-075.html},
  volume={17},
  issn={1532-4435},
  journal={Journal of Machine Learning Research},
  author={Sutter, Tobias and Ganguly, Arnab and Koeppl, Heinz},
  note={Article Number: 190}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55732">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Sutter, Tobias</dc:contributor>
    <dc:creator>Sutter, Tobias</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55732"/>
    <dcterms:title>A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes</dcterms:title>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Ganguly, Arnab</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:06:19Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55732/1/Sutter_2-2qrh672wekn48.PDF"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55732/1/Sutter_2-2qrh672wekn48.PDF"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:06:19Z</dcterms:available>
    <dc:contributor>Ganguly, Arnab</dc:contributor>
    <dc:creator>Koeppl, Heinz</dc:creator>
    <dc:contributor>Koeppl, Heinz</dc:contributor>
    <dcterms:abstract xml:lang="eng">We consider a hidden Markov model, where the signal process, given by a diffusion, is only indirectly observed through some noisy measurements. The article develops a variational method for approximating the hidden states of the signal process given the full set of observations. This, in particular, leads to systematic approximations of the smoothing densities of the signal process. The paper then demonstrates how an efficient inference scheme, based on this variational approach to the approximation of the hidden states, can be designed to estimate the unknown parameters of stochastic differential equations. Two examples at the end illustrate the efficacy and the accuracy of the presented method.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2021-12-02

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen