Publikation: A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider a hidden Markov model, where the signal process, given by a diffusion, is only indirectly observed through some noisy measurements. The article develops a variational method for approximating the hidden states of the signal process given the full set of observations. This, in particular, leads to systematic approximations of the smoothing densities of the signal process. The paper then demonstrates how an efficient inference scheme, based on this variational approach to the approximation of the hidden states, can be designed to estimate the unknown parameters of stochastic differential equations. Two examples at the end illustrate the efficacy and the accuracy of the presented method.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SUTTER, Tobias, Arnab GANGULY, Heinz KOEPPL, 2016. A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes. In: Journal of Machine Learning Research. Microtome Publishing. 2016, 17, 190. ISSN 1532-4435. eISSN 1533-7928BibTex
@article{Sutter2016Varia-55732, year={2016}, title={A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes}, url={https://jmlr.csail.mit.edu/papers/v17/16-075.html}, volume={17}, issn={1532-4435}, journal={Journal of Machine Learning Research}, author={Sutter, Tobias and Ganguly, Arnab and Koeppl, Heinz}, note={Article Number: 190} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55732"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Sutter, Tobias</dc:contributor> <dc:creator>Sutter, Tobias</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55732"/> <dcterms:title>A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes</dcterms:title> <dcterms:issued>2016</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Ganguly, Arnab</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:06:19Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55732/1/Sutter_2-2qrh672wekn48.PDF"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55732/1/Sutter_2-2qrh672wekn48.PDF"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:06:19Z</dcterms:available> <dc:contributor>Ganguly, Arnab</dc:contributor> <dc:creator>Koeppl, Heinz</dc:creator> <dc:contributor>Koeppl, Heinz</dc:contributor> <dcterms:abstract xml:lang="eng">We consider a hidden Markov model, where the signal process, given by a diffusion, is only indirectly observed through some noisy measurements. The article develops a variational method for approximating the hidden states of the signal process given the full set of observations. This, in particular, leads to systematic approximations of the smoothing densities of the signal process. The paper then demonstrates how an efficient inference scheme, based on this variational approach to the approximation of the hidden states, can be designed to estimate the unknown parameters of stochastic differential equations. Two examples at the end illustrate the efficacy and the accuracy of the presented method.</dcterms:abstract> </rdf:Description> </rdf:RDF>