Publikation: Media Bias, the Social Sciences, and NLP : Automating Frame Analyses to Identify Bias by Word Choice and Labeling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Media bias can strongly impact the public perception of topics reported in the news. A difficult to detect, yet powerful form of slanted news coverage is called bias by word choice and labeling (WCL). WCL bias can occur, for example, when journalists refer to the same semantic concept by using different terms that frame the concept differently and consequently may lead to different assessments by readers, such as the terms “freedom fighters” and “terrorists,” or “gun rights” and “gun control.” In this research project, I aim to devise methods that identify instances of WCL bias and estimate the frames they induce, e.g., not only is “terrorists” of negative polarity but also ascribes to aggression and fear. To achieve this, I plan to research methods using natural language processing and deep learning while employing models and using analysis concepts from the social sciences, where researchers have studied media bias for decades. The first results indicate the effectiveness of this interdisciplinary research approach. My vision is to devise a system that helps news readers to become aware of the differences in media coverage caused by bias.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAMBORG, Felix, 2020. Media Bias, the Social Sciences, and NLP : Automating Frame Analyses to Identify Bias by Word Choice and Labeling. ACL 2020 Student Research Workshop. Online, 5. Juli 2020 - 10. Juli 2020. In: RIJHWANI, Shruti, ed. and others. The 58th Annual Meeting of the Association for Computational Linguistics - proceedings of the Student Research Workshop : July 5-July10,2020 : ACL 2020. Stroudsburg, PA, USA: Association for Computational Linguistics (ACL), 2020, pp. 79-87. ISBN 978-1-952148-03-3. Available under: doi: 10.18653/v1/2020.acl-srw.12BibTex
@inproceedings{Hamborg2020Media-52044, year={2020}, doi={10.18653/v1/2020.acl-srw.12}, title={Media Bias, the Social Sciences, and NLP : Automating Frame Analyses to Identify Bias by Word Choice and Labeling}, isbn={978-1-952148-03-3}, publisher={Association for Computational Linguistics (ACL)}, address={Stroudsburg, PA, USA}, booktitle={The 58th Annual Meeting of the Association for Computational Linguistics - proceedings of the Student Research Workshop : July 5-July10,2020 : ACL 2020}, pages={79--87}, editor={Rijhwani, Shruti}, author={Hamborg, Felix} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52044"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Media Bias, the Social Sciences, and NLP : Automating Frame Analyses to Identify Bias by Word Choice and Labeling</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-08T10:37:53Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">Media bias can strongly impact the public perception of topics reported in the news. A difficult to detect, yet powerful form of slanted news coverage is called bias by word choice and labeling (WCL). WCL bias can occur, for example, when journalists refer to the same semantic concept by using different terms that frame the concept differently and consequently may lead to different assessments by readers, such as the terms “freedom fighters” and “terrorists,” or “gun rights” and “gun control.” In this research project, I aim to devise methods that identify instances of WCL bias and estimate the frames they induce, e.g., not only is “terrorists” of negative polarity but also ascribes to aggression and fear. To achieve this, I plan to research methods using natural language processing and deep learning while employing models and using analysis concepts from the social sciences, where researchers have studied media bias for decades. The first results indicate the effectiveness of this interdisciplinary research approach. My vision is to devise a system that helps news readers to become aware of the differences in media coverage caused by bias.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Hamborg, Felix</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-08T10:37:53Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52044"/> <dcterms:issued>2020</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Hamborg, Felix</dc:contributor> </rdf:Description> </rdf:RDF>