Publikation: Assessing a Bayesian Embedding Approach to Circular Regression Models
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Circular data is different from linear data and its analysis also requires methods different from conventional methods. In this study a Bayesian embedding approach to estimating circular regression models is investigated, by means of simulation studies, in terms of performance, efficiency, and flexibility. A new Markov chain Monte Carlo (MCMC) sampling method is proposed and contrasted to an existing method. An empirical example of a regression model predicting teachers’ scores on the interpersonal circumplex will be used throughout. Performance and efficiency are better for the newly proposed sampler and reasonable to good in most situations. Furthermore, the method in general is deemed very flexible. Additional research should be done that provides an overview of what circular data looks like in practice, investigates the interpretation of the circular effects and examines how we might conduct a way of hypothesis testing or model checking for the embedding approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CREMERS, Jolien, Tim MAINHARD, Irene KLUGKIST, 2018. Assessing a Bayesian Embedding Approach to Circular Regression Models. In: Methodology. 2018, 14(2), pp. 69-81. ISSN 1614-1881. eISSN 1614-2241. Available under: doi: 10.1027/1614-2241/a000147BibTex
@article{Cremers2018-04Asses-44362, year={2018}, doi={10.1027/1614-2241/a000147}, title={Assessing a Bayesian Embedding Approach to Circular Regression Models}, number={2}, volume={14}, issn={1614-1881}, journal={Methodology}, pages={69--81}, author={Cremers, Jolien and Mainhard, Tim and Klugkist, Irene} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44362"> <dcterms:abstract xml:lang="eng">Circular data is different from linear data and its analysis also requires methods different from conventional methods. In this study a Bayesian embedding approach to estimating circular regression models is investigated, by means of simulation studies, in terms of performance, efficiency, and flexibility. A new Markov chain Monte Carlo (MCMC) sampling method is proposed and contrasted to an existing method. An empirical example of a regression model predicting teachers’ scores on the interpersonal circumplex will be used throughout. Performance and efficiency are better for the newly proposed sampler and reasonable to good in most situations. Furthermore, the method in general is deemed very flexible. Additional research should be done that provides an overview of what circular data looks like in practice, investigates the interpretation of the circular effects and examines how we might conduct a way of hypothesis testing or model checking for the embedding approach.</dcterms:abstract> <dc:creator>Klugkist, Irene</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Assessing a Bayesian Embedding Approach to Circular Regression Models</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T09:15:24Z</dcterms:available> <dc:contributor>Cremers, Jolien</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44362"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T09:15:24Z</dc:date> <dc:creator>Mainhard, Tim</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31"/> <dc:contributor>Klugkist, Irene</dc:contributor> <dc:contributor>Mainhard, Tim</dc:contributor> <dcterms:issued>2018-04</dcterms:issued> <dc:creator>Cremers, Jolien</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31"/> </rdf:Description> </rdf:RDF>