Publikation:

Assessing a Bayesian Embedding Approach to Circular Regression Models

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Cremers, Jolien
Klugkist, Irene

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Methodology. 2018, 14(2), pp. 69-81. ISSN 1614-1881. eISSN 1614-2241. Available under: doi: 10.1027/1614-2241/a000147

Zusammenfassung

Circular data is different from linear data and its analysis also requires methods different from conventional methods. In this study a Bayesian embedding approach to estimating circular regression models is investigated, by means of simulation studies, in terms of performance, efficiency, and flexibility. A new Markov chain Monte Carlo (MCMC) sampling method is proposed and contrasted to an existing method. An empirical example of a regression model predicting teachers’ scores on the interpersonal circumplex will be used throughout. Performance and efficiency are better for the newly proposed sampler and reasonable to good in most situations. Furthermore, the method in general is deemed very flexible. Additional research should be done that provides an overview of what circular data looks like in practice, investigates the interpretation of the circular effects and examines how we might conduct a way of hypothesis testing or model checking for the embedding approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
900 Geschichte

Schlagwörter

circular data, Bayesian methods, regression, interpersonal circumplex

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CREMERS, Jolien, Tim MAINHARD, Irene KLUGKIST, 2018. Assessing a Bayesian Embedding Approach to Circular Regression Models. In: Methodology. 2018, 14(2), pp. 69-81. ISSN 1614-1881. eISSN 1614-2241. Available under: doi: 10.1027/1614-2241/a000147
BibTex
@article{Cremers2018-04Asses-44362,
  year={2018},
  doi={10.1027/1614-2241/a000147},
  title={Assessing a Bayesian Embedding Approach to Circular Regression Models},
  number={2},
  volume={14},
  issn={1614-1881},
  journal={Methodology},
  pages={69--81},
  author={Cremers, Jolien and Mainhard, Tim and Klugkist, Irene}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44362">
    <dcterms:abstract xml:lang="eng">Circular data is different from linear data and its analysis also requires methods different from conventional methods. In this study a Bayesian embedding approach to estimating circular regression models is investigated, by means of simulation studies, in terms of performance, efficiency, and flexibility. A new Markov chain Monte Carlo (MCMC) sampling method is proposed and contrasted to an existing method. An empirical example of a regression model predicting teachers’ scores on the interpersonal circumplex will be used throughout. Performance and efficiency are better for the newly proposed sampler and reasonable to good in most situations. Furthermore, the method in general is deemed very flexible. Additional research should be done that provides an overview of what circular data looks like in practice, investigates the interpretation of the circular effects and examines how we might conduct a way of hypothesis testing or model checking for the embedding approach.</dcterms:abstract>
    <dc:creator>Klugkist, Irene</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>Assessing a Bayesian Embedding Approach to Circular Regression Models</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T09:15:24Z</dcterms:available>
    <dc:contributor>Cremers, Jolien</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44362"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T09:15:24Z</dc:date>
    <dc:creator>Mainhard, Tim</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31"/>
    <dc:contributor>Klugkist, Irene</dc:contributor>
    <dc:contributor>Mainhard, Tim</dc:contributor>
    <dcterms:issued>2018-04</dcterms:issued>
    <dc:creator>Cremers, Jolien</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen