Publikation:

An Automated Approach for the Optimization of Pixel Based Visualizations

Lade...
Vorschaubild

Dateien

InfoVisJournal2007.pdf
InfoVisJournal2007.pdfGröße: 1.12 MBDownloads: 337

Datum

2007

Autor:innen

Schneidewind, Jörn
Sips, Mike

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Information visualization. 2007, 6(1), pp. 75-88. Available under: doi: 10.1057/palgrave.ivs.9500150

Zusammenfassung

During the last two decades, a wide variety of advanced methods for the visual exploration of large data sets have been proposed.For most of these techniques user interaction has become a crucial element, since there are many situations in which users or analysts have to select the right parameter settings from among many in order to construct insightful visualizations.The right choice of input parameters is essential, since suboptimal parameter settings or the investigation of irrelevant data dimensions make the exploration process more time consuming and may result in wrong conclusions.But finding the right parameters is often a tedious process and it becomes almost impossible for an analyst to find an optimal parameter setting manually because of the volume and complexity of today's data sets.Therefore, we propose a novel approach for automatically determining meaningful parameter- and attribute settings based on the combined analysis of the data space and the resulting visualizations with respect to a given task.Our technique automatically analyzes pixel images resulting from visualizations created from diverse parameter mappings and ranks them according to the potential value for the user. This allows a more effective and more efficient visual data analysis process, since the attribute/parameter space is reduced to meaningful selections and thus the analyst obtains faster insight into the data.Real-world applications are provided to show the benefit of the proposed approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual data exploration, visualization technique, visual analytics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHNEIDEWIND, Jörn, Mike SIPS, Daniel A. KEIM, 2007. An Automated Approach for the Optimization of Pixel Based Visualizations. In: Information visualization. 2007, 6(1), pp. 75-88. Available under: doi: 10.1057/palgrave.ivs.9500150
BibTex
@article{Schneidewind2007Autom-5626,
  year={2007},
  doi={10.1057/palgrave.ivs.9500150},
  title={An Automated Approach for the Optimization of Pixel Based Visualizations},
  number={1},
  volume={6},
  journal={Information visualization},
  pages={75--88},
  author={Schneidewind, Jörn and Sips, Mike and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5626">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>An Automated Approach for the Optimization of Pixel Based Visualizations</dcterms:title>
    <dc:contributor>Sips, Mike</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Sips, Mike</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:18Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5626/1/InfoVisJournal2007.pdf"/>
    <dcterms:bibliographicCitation>First publ. in: Information visualization 6 (2007), 1, pp. 75-88</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:18Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:issued>2007</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5626"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <dcterms:abstract xml:lang="eng">During the last two decades, a wide variety of advanced methods for the visual exploration of large data sets have been proposed.For most of these techniques user interaction has become a crucial element, since there are many situations in which users or analysts have to select the right parameter settings from among many in order to construct insightful visualizations.The right choice of input parameters is essential, since suboptimal parameter settings or the investigation of irrelevant data dimensions make the exploration process more time consuming and may result in wrong conclusions.But finding the right parameters is often a tedious process and it becomes almost impossible for an analyst to find an optimal parameter setting manually because of the volume and complexity of today's data sets.Therefore, we propose a novel approach for automatically determining meaningful parameter- and attribute settings based on the combined analysis of the data space and the resulting visualizations with respect to a given task.Our technique automatically analyzes pixel images resulting from visualizations created from diverse parameter mappings and ranks them according to the potential value for the user. This allows a more effective and more efficient visual data analysis process, since the attribute/parameter space is reduced to meaningful selections and thus the analyst obtains faster insight into the data.Real-world applications are provided to show the benefit of the proposed approach.</dcterms:abstract>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5626/1/InfoVisJournal2007.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen