Publikation: An Automated Approach for the Optimization of Pixel Based Visualizations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
During the last two decades, a wide variety of advanced methods for the visual exploration of large data sets have been proposed.For most of these techniques user interaction has become a crucial element, since there are many situations in which users or analysts have to select the right parameter settings from among many in order to construct insightful visualizations.The right choice of input parameters is essential, since suboptimal parameter settings or the investigation of irrelevant data dimensions make the exploration process more time consuming and may result in wrong conclusions.But finding the right parameters is often a tedious process and it becomes almost impossible for an analyst to find an optimal parameter setting manually because of the volume and complexity of today's data sets.Therefore, we propose a novel approach for automatically determining meaningful parameter- and attribute settings based on the combined analysis of the data space and the resulting visualizations with respect to a given task.Our technique automatically analyzes pixel images resulting from visualizations created from diverse parameter mappings and ranks them according to the potential value for the user. This allows a more effective and more efficient visual data analysis process, since the attribute/parameter space is reduced to meaningful selections and thus the analyst obtains faster insight into the data.Real-world applications are provided to show the benefit of the proposed approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHNEIDEWIND, Jörn, Mike SIPS, Daniel A. KEIM, 2007. An Automated Approach for the Optimization of Pixel Based Visualizations. In: Information visualization. 2007, 6(1), pp. 75-88. Available under: doi: 10.1057/palgrave.ivs.9500150BibTex
@article{Schneidewind2007Autom-5626, year={2007}, doi={10.1057/palgrave.ivs.9500150}, title={An Automated Approach for the Optimization of Pixel Based Visualizations}, number={1}, volume={6}, journal={Information visualization}, pages={75--88}, author={Schneidewind, Jörn and Sips, Mike and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5626"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>An Automated Approach for the Optimization of Pixel Based Visualizations</dcterms:title> <dc:contributor>Sips, Mike</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Sips, Mike</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:18Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5626/1/InfoVisJournal2007.pdf"/> <dcterms:bibliographicCitation>First publ. in: Information visualization 6 (2007), 1, pp. 75-88</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:18Z</dcterms:available> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:issued>2007</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5626"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:creator>Schneidewind, Jörn</dc:creator> <dcterms:abstract xml:lang="eng">During the last two decades, a wide variety of advanced methods for the visual exploration of large data sets have been proposed.For most of these techniques user interaction has become a crucial element, since there are many situations in which users or analysts have to select the right parameter settings from among many in order to construct insightful visualizations.The right choice of input parameters is essential, since suboptimal parameter settings or the investigation of irrelevant data dimensions make the exploration process more time consuming and may result in wrong conclusions.But finding the right parameters is often a tedious process and it becomes almost impossible for an analyst to find an optimal parameter setting manually because of the volume and complexity of today's data sets.Therefore, we propose a novel approach for automatically determining meaningful parameter- and attribute settings based on the combined analysis of the data space and the resulting visualizations with respect to a given task.Our technique automatically analyzes pixel images resulting from visualizations created from diverse parameter mappings and ranks them according to the potential value for the user. This allows a more effective and more efficient visual data analysis process, since the attribute/parameter space is reduced to meaningful selections and thus the analyst obtains faster insight into the data.Real-world applications are provided to show the benefit of the proposed approach.</dcterms:abstract> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dc:format>application/pdf</dc:format> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5626/1/InfoVisJournal2007.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>