Publikation:

kappa-bounded Exponential-Logarithmic Power Series Fields

Lade...
Vorschaubild

Dateien

17_kappa_bounded_exponential_2005.pdf
17_kappa_bounded_exponential_2005.pdfGröße: 215.02 KBDownloads: 197

Datum

2005

Autor:innen

Shelah, Saharon

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Annals of Pure and Applied Logic. 2005, 136(3), pp. 284-296. ISSN 0168-0072. Available under: doi: 10.1016/j.apal.2005.04.001

Zusammenfassung

In [F.-V. Kuhlmann, S. Kuhlmann, S. Shelah, Exponentiation in power series fields, Proc. Amer. Math. Soc. 125 (1997) 3177 3183] it was shown that fields of generalized power series cannot admit an exponential function. In this paper, we construct fields of generalized power series with bounded support which admit an exponential. We give a natural definition of an exponential, which makes these fields into models of real exponentiation. The method allows us to construct for every κ regular uncountable cardinal, 2κ pairwise non-isomorphic models of real exponentiation (of cardinality κ), but all isomorphic as ordered fields. Indeed, the 2κ exponentials constructed have pairwise distinct growth rates. This method relies on constructing lexicographic chains with many automorphisms.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Models of real exponentiation, Iterated lexicographic power of a chain, Logarithmic rank

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUHLMANN, Salma, Saharon SHELAH, 2005. kappa-bounded Exponential-Logarithmic Power Series Fields. In: Annals of Pure and Applied Logic. 2005, 136(3), pp. 284-296. ISSN 0168-0072. Available under: doi: 10.1016/j.apal.2005.04.001
BibTex
@article{Kuhlmann2005kappa-603,
  year={2005},
  doi={10.1016/j.apal.2005.04.001},
  title={kappa-bounded Exponential-Logarithmic Power Series Fields},
  number={3},
  volume={136},
  issn={0168-0072},
  journal={Annals of Pure and Applied Logic},
  pages={284--296},
  author={Kuhlmann, Salma and Shelah, Saharon}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/603">
    <dc:contributor>Shelah, Saharon</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:12Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/603/1/17_kappa_bounded_exponential_2005.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:12Z</dcterms:available>
    <dcterms:title>kappa-bounded Exponential-Logarithmic Power Series Fields</dcterms:title>
    <dcterms:abstract xml:lang="eng">In [F.-V. Kuhlmann, S. Kuhlmann, S. Shelah, Exponentiation in power series fields, Proc. Amer. Math. Soc. 125 (1997) 3177 3183] it was shown that fields of generalized power series cannot admit an exponential function. In this paper, we construct fields of generalized power series with bounded support which admit an exponential. We give a natural definition of an exponential, which makes these fields into models of real exponentiation. The method allows us to construct for every κ regular uncountable cardinal, 2κ pairwise non-isomorphic models of real exponentiation (of cardinality κ), but all isomorphic as ordered fields. Indeed, the 2κ exponentials constructed have pairwise distinct growth rates. This method relies on constructing lexicographic chains with many automorphisms.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2005</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dc:creator>Shelah, Saharon</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/603/1/17_kappa_bounded_exponential_2005.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/603"/>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>First publ. in: Annals of pure and applied logic 136 (2005), 3, pp. 284-296</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen