Publikation:

Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2008

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Mathematics in Computer Science. 2008, 1(3), pp. 487-505. Available under: doi: 10.1007/s11786-007-0038-y

Zusammenfassung

A complete classification of the computational complexity of the fixed-point existence problem for Boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a Boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of Boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs, then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NPcomplete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one, then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

discrete dynamical systems, fixed points, algorithms and complexity

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOSUB, Sven, 2008. Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems. In: Mathematics in Computer Science. 2008, 1(3), pp. 487-505. Available under: doi: 10.1007/s11786-007-0038-y
BibTex
@article{Kosub2008Dicho-3017,
  year={2008},
  doi={10.1007/s11786-007-0038-y},
  title={Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems},
  number={3},
  volume={1},
  journal={Mathematics in Computer Science},
  pages={487--505},
  author={Kosub, Sven}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3017">
    <dcterms:bibliographicCitation>Publ. in: Mathematics in Computer Science, 1 (2008), 3, pp. 487-505</dcterms:bibliographicCitation>
    <dc:contributor>Kosub, Sven</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:47Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2008</dcterms:issued>
    <dcterms:abstract xml:lang="eng">A complete classification of the computational complexity of the fixed-point existence problem for Boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a Boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of Boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs, then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NPcomplete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one, then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.</dcterms:abstract>
    <dc:creator>Kosub, Sven</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:47Z</dcterms:available>
    <dcterms:title>Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3017"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen