Publikation: Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A complete classification of the computational complexity of the fixed-point existence problem for Boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a Boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of Boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs, then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NPcomplete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one, then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOSUB, Sven, 2008. Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems. In: Mathematics in Computer Science. 2008, 1(3), pp. 487-505. Available under: doi: 10.1007/s11786-007-0038-yBibTex
@article{Kosub2008Dicho-3017, year={2008}, doi={10.1007/s11786-007-0038-y}, title={Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems}, number={3}, volume={1}, journal={Mathematics in Computer Science}, pages={487--505}, author={Kosub, Sven} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3017"> <dcterms:bibliographicCitation>Publ. in: Mathematics in Computer Science, 1 (2008), 3, pp. 487-505</dcterms:bibliographicCitation> <dc:contributor>Kosub, Sven</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:47Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2008</dcterms:issued> <dcterms:abstract xml:lang="eng">A complete classification of the computational complexity of the fixed-point existence problem for Boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a Boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of Boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs, then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NPcomplete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one, then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.</dcterms:abstract> <dc:creator>Kosub, Sven</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:47Z</dcterms:available> <dcterms:title>Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3017"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>