Publikation:

Fingerprints : detecting meaningful moments for mobile health intervention

Lade...
Vorschaubild

Dateien

Wang_0-399798.pdf
Wang_0-399798.pdfGröße: 300.53 KBDownloads: 406

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

SMARTACT Teilprojekt 6: Smartmobility
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

MobileHCI '16 : Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. New York, NY: ACM, 2016, pp. 1085-1088. ISBN 978-1-4503-4413-5. Available under: doi: 10.1145/2957265.2965006

Zusammenfassung

Personalized and contextual interventions are promising techniques for mobile persuasive technologies in mobile health. In this paper, we propose the "fingerprints" technique to analyze the users' daily behavior patterns to find the meaningful moments to better support mobile persuasive technologies, especially mobile health interventions. We assume that for many persons, their behaviors have patterns and can be detected through the sensor data from smartphones. We develop a three-step interactive machine learning workflow to describe the concept and approach of the "fingerprints" technique. By this we aim to implement a practical and light-weight mobile intervention system without burdening the users with manual logging. In our feasibility study, we show results that provide first insights into the design of the "fingerprints" technique.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Mobile persuasive technologies; mobile intervention; interactive machine learning

Konferenz

MobileHCI '16 : 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, 6. Sept. 2016 - 9. Sept. 2016, Florence, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WANG, Yunlong, Le DUAN, Simon BUTSCHER, Jens MÜLLER, Harald REITERER, 2016. Fingerprints : detecting meaningful moments for mobile health intervention. MobileHCI '16 : 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. Florence, Italy, 6. Sept. 2016 - 9. Sept. 2016. In: MobileHCI '16 : Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. New York, NY: ACM, 2016, pp. 1085-1088. ISBN 978-1-4503-4413-5. Available under: doi: 10.1145/2957265.2965006
BibTex
@inproceedings{Wang2016Finge-38189,
  year={2016},
  doi={10.1145/2957265.2965006},
  title={Fingerprints : detecting meaningful moments for mobile health intervention},
  isbn={978-1-4503-4413-5},
  publisher={ACM},
  address={New York, NY},
  booktitle={MobileHCI '16 : Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct},
  pages={1085--1088},
  author={Wang, Yunlong and Duan, Le and Butscher, Simon and Müller, Jens and Reiterer, Harald}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38189">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38189"/>
    <dc:creator>Wang, Yunlong</dc:creator>
    <dc:contributor>Reiterer, Harald</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-28T14:52:22Z</dcterms:available>
    <dc:contributor>Müller, Jens</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Reiterer, Harald</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Wang, Yunlong</dc:contributor>
    <dc:contributor>Butscher, Simon</dc:contributor>
    <dcterms:title>Fingerprints : detecting meaningful moments for mobile health intervention</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Müller, Jens</dc:creator>
    <dc:contributor>Duan, Le</dc:contributor>
    <dc:creator>Duan, Le</dc:creator>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Butscher, Simon</dc:creator>
    <dcterms:abstract xml:lang="eng">Personalized and contextual interventions are promising techniques for mobile persuasive technologies in mobile health. In this paper, we propose the "fingerprints" technique to analyze the users' daily behavior patterns to find the meaningful moments to better support mobile persuasive technologies, especially mobile health interventions. We assume that for many persons, their behaviors have patterns and can be detected through the sensor data from smartphones. We develop a three-step interactive machine learning workflow to describe the concept and approach of the "fingerprints" technique. By this we aim to implement a practical and light-weight mobile intervention system without burdening the users with manual logging. In our feasibility study, we show results that provide first insights into the design of the "fingerprints" technique.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38189/3/Wang_0-399798.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38189/3/Wang_0-399798.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-28T14:52:22Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen