Publikation:

"New intermediates, pathways, enzymes and genes in the microbial metabolism of organosulfonates"

Lade...
Vorschaubild

Dateien

Diss_Sonja_Weinitschke.pdf
Diss_Sonja_Weinitschke.pdfGröße: 1.37 MBDownloads: 2417

Datum

2010

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Neue Intermediate, Stoffwechselwege, Enzyme und Gene im mikrobiellen Abbau von Organosulfonaten
Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Taurine (2-aminoethanesulfonate), isethionate (2-hydroxyethanesulfonate) and sulfoacetate are natural C2 sulfonates which exist in the environment and are to our current knowledge solely degraded by microorganisms which are able to cleave the chemically stable C-sulfonate bond.
Anaerobic and aerobic degradation of taurine is well investigated in diverse (marine and terrestrial) bacteria.
The aerobic dissmilation of taurine proceeds via the central intermediate sulfoacetaldehyde (SAA) and subsequent desulfonation by sulfoacetaldehyde acetyltransferase (Xsc) to acetylphosphate and sulfite. Acetylphosphate is then metabolized (by two different possible pathways, e.g. by Pta, phosphate acetyltransferase) to acetyl-CoA and thereby channeled into central metabolism. Sulfite is, for the purpose of detoxification, oxidized to sulfate by sulfite dehydrogenase.

It is a generally accepted hypothesis that the degradative pathways of isethionate and sulfoacetate converge at SAA with other (C2) sulfonates.

In this study, this hypothesis was confirmed in the bacterium Cupriavidus necator H16: the organism was able to utilize taurine, isethionate and sulfoacetate as a sole source of carbon and energy for growth, and it excreted stoichiometric amounts of sulfate into the growth medium. Inducible enzyme activities were measured during growth with each of the three sulfonates. Additionally, transcription experiments (RT-PCR, reverse transcription PCR) with the appropriate genes showed inducible transcription of each of the genes in mRNA extracted from sulfoacetate-grown cells. Furthermore, a transport protein (TauE) was presumed to represent a sulfite exporter wich is responsible for the translocation of sulfite into the periplasm, its site of oxidation by SorAB.
In addition, the previously uncharacterized initial steps of isethionate and sulfoacetate, leading to SAA, were investigated: The microbial dissimilation of isethionate is presumed to occur via inducible isethionate dehydrogenase (IseJ) in marine and terrestrial bacteria.

A gene cluster was found which presumably encodes the isethionate degradative genes. The gene products include a putative transcriptional regulator (IseR), isethionate dehydrogenase (IseJ) as well as a transport system (IseU in terrestrial bacteria, IseKLM in marine bacteria).

The microbial degradation of sulfoacetate in C. necator H16 proceeds via an ATP-dependent activation of sulfoacetate to the novel CoA-ester sulfoacetyl-CoA. This intermediate was identified by MALDI-TOF mass spectrometry. The enzyme catalyzing this reaction was sulfoacetate-CoA ligase (SauT) which could be measured in a discontinuous enzyme assay at the HPLC. In the next step, sulfoacetyl-CoA was converted to SAA by sulfoacetaldehyde dehydrogenase (SauS). Both SauT and SauS were inducibly active during growth with sulfoacetate. SauS was purified to homogeneity, characterized and assigned to the coding gene (H16_A2747) by PMF (peptide mass fingerprinting).

The gene sauS was part of a cluster consisting of four genes encoding regulation (SauR), activation (SauT), reduction (SauS) and transport (SauU). The catabolic genes sauSTU were inducibly transcribed during growth with sulfoacetate, as confirmed by RT-PCR. In addition, the involvement of the genes in sulfoacetate degradation was proven by site-directed mutagenesis.

By comparative genomics, 25 microorganisms, both marine and terrestrial, were found to contain sulfoacetate gene clusters. Thereby, a different putative activation enzyme (heteromeric sulfoacetate-CoA ligase SauPQ), different types of regulators (SauI, SauV) and an alternative transport system (TTT, tripartite tricarboxylate transporter, SauFGH) for sulfoacatate were discovered. Some of these variants of the newly discovered sulfoacetate degradation pathway were investigated in e.g. Roseovarius nubinhibens ISM and Oligotropha carboxidovorans OM5 by means of growth experiments, enzyme activity tests and RT-PCR.

Zusammenfassung in einer weiteren Sprache

Taurin, Isethionat und Sulfoacetat sind natürlich vorkommende C2-Sulfonate, die in der Umwelt vorliegen und dort nach heutigem Wissensstand ausschließlich von Mikroorganismen abgebaut werden können, da nur diese in der Lage sind, die chemisch stabile Kohlenstoff-Sulfonat-Bindung zu spalten.
Der aerobe sowie anaerobe Abbau von Taurin in verschiedenen Bakterien wurde bereits weitgehend geklärt. Die aerobe Dissimilation von Taurin verläuft immer über das zentrale Intermediat Sulfoacetaldehyd (SAA) und dessen anschließende Desulfonierung zu Acetylphosphat und Sulfit, katalysiert durch die Sulfoacetaldehyd-Acetyltransferase (Xsc). Das dabei entstehende Acetylphosphat wird (auf verschiedenen möglichen Reaktionswegen) zu Acetyl-CoA umgesetzt (beispielsweise durch Pta, Phosphat-Acetyltransferase) und kann somit in den zentralen Stoffwechsel eingeschleust werden. Das ebenfalls entstandene Sulfit wird durch eine Sulfit-Dehydrogenase zu Sulfat oxidiert.

Von Isethionat sowie Sulfoacetat wird seit einigen Jahren angenommen, dass sie wie Taurin ebenfalls über SAA abgebaut werden.

In der vorliegenden Arbeit wurde im Bakterium Cupriavidus necator H16 diese Vermutung bestätigt: Das Bakterium war in der Lage, Taurin, Isethionat und Sulfoacetat als jeweils alleinige Kohlenstoffquelle zu verwenden und schied in stöchiometrischem Verhältnis Sulfat aus. Induzierbare Enzymaktivitäten sowie Transkriptions-Experimente mit den jeweiligen Genen zeigten, dass alle drei Sulfonate über SAA abgebaut wurden.

Es wurde weiterhin ein potentielles Transportproteinen (TauE) für Sulfit gefunden, welches vermutlich Sulfit aus dem Cytoplasma in das Periplasma transportiert, wo es durch die Sulfit-Dehydrogenase zu Sulfat oxidiert wird.
Als weitere Themen der vorliegenden Doktorarbeit wurden die initialen, bislang unbekannten Schritte des Abbaus von Sulfoacetat sowie Isethionat auf dem Weg zum gemeinsamen Zwischenprodukt (SAA) untersucht.

Der Isethionat-Abbau verläuft in terrestrischen sowie marinen Bakterien vermutlich über eine induzierbare Isethionat-Dehydrogenase (IseJ). Mit Hilfe von RT-PCR wurden Gene identifiziert, die vermutlich die für den Isethionat-Abbau benötigten Enzyme kodieren und in allen Isethionat-verwertenden Bakterienstämmen ein definiertes Cluster bilden. Diese Gene kodieren vermutlich einen Regulator (IseR), die Isethionat-Dehydrogenase (IseJ) sowie verschiedene Transport-systeme (IseU in terrestrischen Bakterien, IseKLM in marinen Bakterien).

Der Sulfoacetat-Abbau verläuft in Cupriavidus necator H16 über eine ATP-abhängige Aktivierung von Sulfoacetat zu Sulfoacetyl-CoA, einem neuartigen CoA-Ester. Dieser CoA-Ester wurde mittels HPLC gemessen und mit Hilfe von MALDI-TOF-Massenspektrometrie als Sulfoacetyl-CoA identifiziert. Das katalysierende Enzym, Sulfoacetat-CoA-Ligase (SauT), wurde in einem diskontinuierlichen Enzymtest mittels HPLC nachgewiesen. Im nächsten Schritt wurde Sulfoacetyl-CoA von der Sulfoacetaldehyd-Dehydrogenase (SauS) zu Sulfoacetaldehyd umgesetzt. Beide Enzyme waren nur bei Wachstum mit Sulfoacetat aktiv. SauS wurde gereinigt und charakterisiert, und mittels PMF (Peptide Mass Fingerprint) konnte das Enzym seinem Genlokus (H16_A2747) zugeordnet werden.
Das Gen sauS ist Teil eines Genclusters bestehend aus 4 Genen. Deren Genprodukte umfassen einen transkriptionellen Regulator (SauR), die Sulfoacetaldehyd-Dehydrogenase (SauS), ein als Acetat-CoA-Ligase annotiertes Protein, welches wir für die Sulfoacetat-CoA-Ligase (SauT) halten, sowie ein MFS-Transportprotein (SauU), das den Sulfoacetat-Transporter darstellt. Die katabolischen Gene sauSTU waren induzierbar transkribiert, wie mittels RT-PCR bestätigt. Die Beteiligung dieser drei Gene wurde weiterhin durch gerichtete Deletionsmutagenese bewiesen.

Durch Vergleich von Sulfoacetat-Genclustern in 25 verschiedenen Genom-sequenzierten marinen sowie terrestrischen Bakterien wurden alternative Transportsysteme (TTT, tripartite tricarboxylate transporter, SauFGH), Regulatoren (SauI, SauV) sowie eine heteromere Variante der Sulfoacetat-CoA-Ligase (SauPQ) gefunden. Einige dieser Variationen (SauFGH, SauPQ) wurden in Roseovarius nubinhibens ISM sowie Oligotropha carboxidovorans OM5 mittels Wachstumsversuchen, Enzymaktivitätstests sowie RT-PCR untersucht und bestätigt.

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Sulfoacetat, Isethionat, Sulfoacetyl-CoA, Cupriavidus necator H16, Sulfonates, sulfoacetate, isethionate, taurine, sulfoacetyl-CoA, biodegradation, Cupriavidus necator H16, terrestrial, marine, terrestrisch

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WEINITSCHKE, Sonja, 2010. "New intermediates, pathways, enzymes and genes in the microbial metabolism of organosulfonates" [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Weinitschke2010inter-6849,
  year={2010},
  title={"New intermediates, pathways, enzymes and genes in the microbial metabolism of organosulfonates"},
  author={Weinitschke, Sonja},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6849">
    <dc:contributor>Weinitschke, Sonja</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6849"/>
    <dcterms:abstract xml:lang="eng">Taurine (2-aminoethanesulfonate), isethionate (2-hydroxyethanesulfonate) and sulfoacetate are natural C2 sulfonates which exist in the environment and are   to our current knowledge   solely degraded by microorganisms which are able to cleave the chemically stable C-sulfonate bond.&lt;br /&gt;Anaerobic and aerobic degradation of taurine is well investigated in diverse (marine and terrestrial) bacteria.&lt;br /&gt;The aerobic dissmilation of taurine proceeds via the central intermediate sulfoacetaldehyde (SAA) and subsequent desulfonation by sulfoacetaldehyde acetyltransferase (Xsc) to acetylphosphate and sulfite. Acetylphosphate is then metabolized (by two different possible pathways, e.g. by Pta, phosphate acetyltransferase) to acetyl-CoA and thereby channeled into central metabolism. Sulfite is, for the purpose of detoxification, oxidized to sulfate by sulfite dehydrogenase.&lt;br /&gt;&lt;br /&gt;It is a generally accepted hypothesis that the degradative pathways of isethionate and sulfoacetate converge at SAA with other (C2) sulfonates.&lt;br /&gt;&lt;br /&gt;In this study, this hypothesis was confirmed in the bacterium Cupriavidus necator H16: the organism was able to utilize taurine, isethionate and sulfoacetate as a sole source of carbon and energy for growth, and it excreted stoichiometric amounts of sulfate into the growth medium. Inducible enzyme activities were measured during growth with each of the three sulfonates. Additionally, transcription experiments (RT-PCR, reverse transcription PCR) with the appropriate genes showed inducible transcription of each of the genes in mRNA extracted from sulfoacetate-grown cells. Furthermore, a transport protein (TauE) was presumed to represent a sulfite exporter wich is responsible for the translocation of sulfite into the periplasm, its site of oxidation by SorAB.&lt;br /&gt;In addition, the previously uncharacterized initial steps of isethionate and sulfoacetate, leading to SAA, were investigated: The microbial dissimilation of isethionate is presumed to occur via inducible isethionate dehydrogenase (IseJ) in marine and terrestrial bacteria.&lt;br /&gt;&lt;br /&gt;A gene cluster was found which presumably encodes the isethionate degradative genes. The gene products include a putative transcriptional regulator (IseR), isethionate dehydrogenase (IseJ) as well as a transport system (IseU in terrestrial bacteria, IseKLM in marine bacteria).&lt;br /&gt;&lt;br /&gt;The microbial degradation of sulfoacetate in C. necator H16 proceeds via an ATP-dependent activation of sulfoacetate to the novel CoA-ester sulfoacetyl-CoA. This intermediate was identified by MALDI-TOF mass spectrometry. The enzyme catalyzing this reaction was sulfoacetate-CoA ligase (SauT) which could be measured in a discontinuous enzyme assay at the HPLC. In the next step, sulfoacetyl-CoA was converted to SAA by sulfoacetaldehyde dehydrogenase (SauS). Both SauT and SauS were inducibly active during growth with sulfoacetate. SauS was purified to homogeneity, characterized and assigned to the coding gene (H16_A2747) by PMF (peptide mass fingerprinting).&lt;br /&gt;&lt;br /&gt;The gene sauS was part of a cluster consisting of four genes encoding regulation (SauR), activation (SauT), reduction (SauS) and transport (SauU). The catabolic genes sauSTU were inducibly transcribed during growth with sulfoacetate, as confirmed by RT-PCR. In addition, the involvement of the genes in sulfoacetate degradation was proven by site-directed mutagenesis.&lt;br /&gt;&lt;br /&gt;By comparative genomics, 25 microorganisms, both marine and terrestrial, were found to contain sulfoacetate gene clusters. Thereby, a different putative activation enzyme (heteromeric sulfoacetate-CoA ligase SauPQ), different types of regulators (SauI, SauV) and an alternative transport system (TTT, tripartite tricarboxylate transporter, SauFGH) for sulfoacatate were discovered. Some of these variants of the newly discovered sulfoacetate degradation pathway were investigated in e.g. Roseovarius nubinhibens ISM and Oligotropha carboxidovorans OM5 by means of growth experiments, enzyme activity tests and RT-PCR.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6849/1/Diss_Sonja_Weinitschke.pdf"/>
    <dc:creator>Weinitschke, Sonja</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6849/1/Diss_Sonja_Weinitschke.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-31T23:25:16Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:38Z</dc:date>
    <dcterms:alternative>Neue Intermediate, Stoffwechselwege, Enzyme und Gene im mikrobiellen Abbau von Organosulfonaten</dcterms:alternative>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:title>"New intermediates, pathways, enzymes and genes in the microbial metabolism of organosulfonates"</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

February 26, 2010
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen