Publikation:

RB-Based Hierarchical Multiobjective Optimization

Lade...
Vorschaubild

Dateien

Kartmann_2-3onmcsi3ltqd9.pdf
Kartmann_2-3onmcsi3ltqd9.pdfGröße: 1.95 MBDownloads: 182

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this thesis we consider different multiobjective optimization problems constrained by elliptic PDEs. For such problems the computational effort can be challenging due to (1) the presence of many objectives and the uncountableness of the Pareto set and due to (2) the presence of PDE constraints, which make the objective function evaluation expensive. To overcome these two challenges, we use two reduction techniques, which are (i) Hierarchical Multiobjective Optimization, which aims at a efficient description of the Pareto set, and (ii) Reduced Order Modelling (ROM) techniques, to speed up the PDE solves. To be precise, we are using the Reduced Basis (RB) method as a tool for reduced order modelling in combination with hierarchical variants of Continuation methods (CM) and Weighted sum methods (WSM) for the multiobjective optimization. Those variants aim at computing the boundary of the Pareto (critical) set by considering subsets of the objective functions and are based on a theoretical description of the hierarchical structure of the Pareto (critical) set. This has the advantage that objective components can be neglected for the computation of certain Pareto critical points and that the Pareto (critical) set is described completely by a smaller amount of points needed. In the case of a strictly convex, quadratic, coercive objective we proof that the Pareto set is completely described as the convex hull of the minimizers of the components and we apply this fact to a special class of abstract multiobjective optimal control problems. Further, we consider how the inexactness due to the RB approximation in the objective translates into an error in the Pareto (critical) set. The hierarchical CM and the RB method are applied to a non-convex multiobjective parameter optimization problem and the RB method in combination with the WSM is applied to a non-smooth multiobjective parameter-optimization problem with $l^1$-regularization. Numerical tests confirm the benefit from the hierarchical optimization and the reduced basis approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Multiobjecive Optimization, Model Order Reduction, Reduced Basis Method, Continuation Methods

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KARTMANN, Michael, 2022. RB-Based Hierarchical Multiobjective Optimization [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Kartmann2022RBBas-58354,
  year={2022},
  title={RB-Based Hierarchical Multiobjective Optimization},
  address={Konstanz},
  school={Universität Konstanz},
  author={Kartmann, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58354">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kartmann, Michael</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58354"/>
    <dcterms:title>RB-Based Hierarchical Multiobjective Optimization</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58354/3/Kartmann_2-3onmcsi3ltqd9.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58354/3/Kartmann_2-3onmcsi3ltqd9.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">In this thesis we consider different multiobjective optimization problems constrained by elliptic PDEs.  For such problems the computational effort can be challenging due to (1) the presence of many objectives and the uncountableness of the Pareto set and due to (2) the presence of PDE constraints, which make the objective function evaluation expensive. To overcome these two challenges, we use two reduction techniques, which are (i) Hierarchical Multiobjective Optimization,  which aims at a efficient description of the Pareto set, and (ii) Reduced Order Modelling (ROM) techniques, to speed up the PDE solves.  To be precise, we are using the Reduced Basis (RB) method as a tool for reduced order modelling in combination with hierarchical variants of  Continuation methods (CM) and Weighted sum methods (WSM) for the multiobjective optimization.  Those variants aim at computing the boundary of the Pareto (critical) set by considering subsets of the objective functions and are based on a theoretical description of the hierarchical structure of the Pareto (critical) set.  This has the advantage that objective components can be neglected for the computation of certain Pareto critical points and that the Pareto (critical) set is described completely by a smaller amount of points needed. In the case of a strictly convex, quadratic, coercive objective we proof that the Pareto set is completely described as the convex hull of the minimizers of the components and we  apply this fact to a special class of abstract multiobjective optimal control problems. Further, we consider how the inexactness due to the RB approximation in the objective translates into an error in the Pareto (critical) set. The hierarchical CM and the RB method are applied to a non-convex multiobjective parameter optimization problem and the RB method in combination with the WSM is applied to a non-smooth multiobjective parameter-optimization problem with $l^1$-regularization.  Numerical tests confirm the benefit from the hierarchical optimization and the reduced basis approach.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-22T09:06:57Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-22T09:06:57Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Kartmann, Michael</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2022
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen