Publikation: The Role of Largest Connected Components in Collective Motion
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Systems showing collective motion are partially described by a distribution of positions and a distribution of velocities. While models of collective motion often focus on system features governed mostly by velocity distributions, the model presented in this paper also incorporates features influenced by positional distributions. A significant feature, the size of the largest connected component of the graph induced by the particle positions and their perception range, is identified using a 1-d self-propelled particle model (SPP). Based on largest connected components, properties of the system dynamics are found that are time-invariant. A simplified macroscopic model can be defined based on this time-invariance, which may allow for simple, concise, and precise predictions of systems showing collective motion.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAMANN, Heiko, 2018. The Role of Largest Connected Components in Collective Motion. ANTS 2018 : 11th International Conference on Swarm Intelligence. Rome, Italy, 29. Okt. 2018 - 31. Okt. 2018. In: DORIGO, Marco, ed., Mauro BIRATTARI, ed., Christian BLUM, ed., Anders L. CHRISTENSEN, ed., Andreagiovanni REINA, ed., Vito TRIANNI, ed.. Swarm Intelligence : 11th International Conference, ANTS 2018, Rome, Italy, October 29-31, 2018, Proceedings. Cham: Springer, 2018, pp. 290-301. Lecture Notes in Computer Science. 11172. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-00532-0. Available under: doi: 10.1007/978-3-030-00533-7_23BibTex
@inproceedings{Hamann2018Large-59804, year={2018}, doi={10.1007/978-3-030-00533-7_23}, title={The Role of Largest Connected Components in Collective Motion}, number={11172}, isbn={978-3-030-00532-0}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Swarm Intelligence : 11th International Conference, ANTS 2018, Rome, Italy, October 29-31, 2018, Proceedings}, pages={290--301}, editor={Dorigo, Marco and Birattari, Mauro and Blum, Christian and Christensen, Anders L. and Reina, Andreagiovanni and Trianni, Vito}, author={Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59804"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T14:41:20Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Systems showing collective motion are partially described by a distribution of positions and a distribution of velocities. While models of collective motion often focus on system features governed mostly by velocity distributions, the model presented in this paper also incorporates features influenced by positional distributions. A significant feature, the size of the largest connected component of the graph induced by the particle positions and their perception range, is identified using a 1-d self-propelled particle model (SPP). Based on largest connected components, properties of the system dynamics are found that are time-invariant. A simplified macroscopic model can be defined based on this time-invariance, which may allow for simple, concise, and precise predictions of systems showing collective motion.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59804"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T14:41:20Z</dc:date> <dcterms:issued>2018</dcterms:issued> <dc:contributor>Hamann, Heiko</dc:contributor> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59804/1/Hamann_2-3s39khgq2ue87.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Hamann, Heiko</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59804/1/Hamann_2-3s39khgq2ue87.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>The Role of Largest Connected Components in Collective Motion</dcterms:title> </rdf:Description> </rdf:RDF>