Publikation:

General Parabolic Mixed Order Systems in Lp and Applications

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

978-3-319-01999-4
Bibliografische Daten

Verlag

Basel : Birkhäuser

Schriftenreihe

Operator Theory: Advances and Applications;239

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Monographie
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this text, a theory for general linear parabolic partial differential equations is established which covers equations with inhomogeneous symbol structure as well as mixed-order systems. Typical applications include several variants of the Stokes system and free boundary value problems. We show well-posedness in Lp-Lq-Sobolev spaces in time and space for the linear problems (i.e., maximal regularity) which is the key step for the treatment of nonlinear problems. The theory is based on the concept of the Newton polygon and can cover equations which are not accessible by standard methods as, e.g., semigroup theory. Results are obtained in different types of non-integer Lp-Sobolev spaces as Besov spaces, Bessel potential spaces, and Triebel–Lizorkin spaces. The last-mentioned class appears in a natural way as traces of Lp-Lq-Sobolev spaces. We also present a selection of applications in the whole space and on half-spaces. Among others, we prove well-posedness of the linearizations of the generalized thermoelastic plate equation, the two-phase Navier–Stokes equations with Boussinesq–Scriven surface, and the Lp-Lq two-phase Stefan problem with Gibbs–Thomson correction.​

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Newton-polygon, Triebel-Lizorkin spaces, free boundary problems, mixed order systems, parabolic differential equations

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DENK, Robert, Mario KAIP, 2013. General Parabolic Mixed Order Systems in Lp and Applications. Basel : Birkhäuser. ISBN 978-3-319-01999-4
BibTex
@book{Denk2013Gener-25670,
  year={2013},
  doi={10.1007/978-3-319-02000-6},
  isbn={978-3-319-01999-4},
  publisher={Basel : Birkhäuser},
  series={Operator Theory: Advances and Applications;239},
  title={General Parabolic Mixed Order Systems in L<sub>p</sub> and Applications},
  author={Denk, Robert and Kaip, Mario}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25670">
    <dcterms:title>General Parabolic Mixed Order Systems in L&lt;sub&gt;p&lt;/sub&gt; and Applications</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-10T07:31:05Z</dc:date>
    <bibo:issn>978-3-319-01999-4</bibo:issn>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25670"/>
    <dc:publisher>Basel : Birkhäuser</dc:publisher>
    <dc:contributor>Kaip, Mario</dc:contributor>
    <dcterms:issued>2013</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-10T07:31:05Z</dcterms:available>
    <dc:creator>Denk, Robert</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dc:contributor>Denk, Robert</dc:contributor>
    <dc:creator>Kaip, Mario</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">In this text, a theory for general linear parabolic partial differential equations is established which covers equations with inhomogeneous symbol structure as well as mixed-order systems. Typical applications include several variants of the Stokes system and free boundary value problems. We show well-posedness in Lp-Lq-Sobolev spaces in time and space for the linear problems (i.e., maximal regularity) which is the key step for the treatment of nonlinear problems. The theory is based on the concept of the Newton polygon and can cover equations which are not accessible by standard methods as, e.g., semigroup theory. Results are obtained in different types of non-integer Lp-Sobolev spaces as Besov spaces, Bessel potential spaces, and Triebel–Lizorkin spaces. The last-mentioned class appears in a natural way as traces of Lp-Lq-Sobolev spaces. We also present a selection of applications in the whole space and on half-spaces. Among others, we prove well-posedness of the linearizations of the generalized thermoelastic plate equation, the two-phase Navier–Stokes equations with Boussinesq–Scriven surface, and the Lp-Lq two-phase Stefan problem with Gibbs–Thomson correction.​</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen