Publikation:

On robust local polynomial estimation with Long-memory errors

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2002

Autor:innen

Ghosh, Sucharita
Sibbertsen, Philipp

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Forecasting. 2002, 18(2), pp. 227-241. ISSN 0169-2070. eISSN 1872-8200. Available under: doi: 10.1016/S0169-2070(01)00155-8

Zusammenfassung

Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if least-squares regression is used. In this paper, local polynomial smoothing based on M-estimation is considered for the case where the error process exhibits long-range dependence. In contrast to the iid case, all M-estimators are asymptotically equivalent to the least-square solution, under the (ideal) Gaussian model. The potential usefulness of the proposal for forecasting is illustrated by practical and simulated examples. A simulation study shows that outliers have a major effect on nonrobust bandwidth selection, in particular due to the change of the dependence structure.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERAN, Jan, Yuanhua FENG, Sucharita GHOSH, Philipp SIBBERTSEN, 2002. On robust local polynomial estimation with Long-memory errors. In: International Journal of Forecasting. 2002, 18(2), pp. 227-241. ISSN 0169-2070. eISSN 1872-8200. Available under: doi: 10.1016/S0169-2070(01)00155-8
BibTex
@article{Beran2002robus-27569,
  year={2002},
  doi={10.1016/S0169-2070(01)00155-8},
  title={On robust local polynomial estimation with Long-memory errors},
  number={2},
  volume={18},
  issn={0169-2070},
  journal={International Journal of Forecasting},
  pages={227--241},
  author={Beran, Jan and Feng, Yuanhua and Ghosh, Sucharita and Sibbertsen, Philipp}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27569">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:issued>2002</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Sibbertsen, Philipp</dc:contributor>
    <dc:creator>Feng, Yuanhua</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Ghosh, Sucharita</dc:creator>
    <dc:contributor>Ghosh, Sucharita</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27569"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if least-squares regression is used. In this paper, local polynomial smoothing based on M-estimation is considered for the case where the error process exhibits long-range dependence. In contrast to the iid case, all M-estimators are asymptotically equivalent to the least-square solution, under the (ideal) Gaussian model. The potential usefulness of the proposal for forecasting is illustrated by practical and simulated examples. A simulation study shows that outliers have a major effect on nonrobust bandwidth selection, in particular due to the change of the dependence structure.</dcterms:abstract>
    <dcterms:bibliographicCitation>International Journal of Forecasting ; 18 (2002), 2. - S. 227-241</dcterms:bibliographicCitation>
    <dc:contributor>Feng, Yuanhua</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-16T11:42:05Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Sibbertsen, Philipp</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Beran, Jan</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-16T11:42:05Z</dcterms:available>
    <dcterms:title>On robust local polynomial estimation with Long-memory errors</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen