Publikation:

Using Entropy Impurity for Improved 3D Object Similarity Search

Lade...
Vorschaubild

Dateien

ICME04.pdf
ICME04.pdfGröße: 266.28 KBDownloads: 419

Datum

2004

Autor:innen

Bustos Cárdenas, Benjamin Eugenio
Vranić, Dejan V.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763). IEEE, 2004, pp. 1303-1306. ISBN 0-7803-8603-5. Available under: doi: 10.1109/ICME.2004.1394465

Zusammenfassung

Similarity search in 3D object databases is becoming an important problem in multimedia retrieval, with many practical applications. We investigate methods for improving the effectiveness in a retrieval system that implements multiple feature extraction algorithms to choose from. Our techniques are based on the entropy impurity measure, widely used in the context of decision trees. We propose a method for the a priori estimation of individual feature vector performance given a query. We then define two approaches that use this estimator to improve the retrieval effectiveness. Our experimental results show that significant improvements are achievable using these methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2004 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BUSTOS CÁRDENAS, Benjamin Eugenio, Daniel A. KEIM, Dietmar SAUPE, Tobias SCHRECK, Dejan V. VRANIĆ, 2004. Using Entropy Impurity for Improved 3D Object Similarity Search. 2004 IEEE International Conference on Multimedia and Expo (ICME). Taipei, Taiwan. In: 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763). IEEE, 2004, pp. 1303-1306. ISBN 0-7803-8603-5. Available under: doi: 10.1109/ICME.2004.1394465
BibTex
@inproceedings{BustosCardenas2004Using-5418,
  year={2004},
  doi={10.1109/ICME.2004.1394465},
  title={Using Entropy Impurity for Improved 3D Object Similarity Search},
  isbn={0-7803-8603-5},
  publisher={IEEE},
  booktitle={2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763)},
  pages={1303--1306},
  author={Bustos Cárdenas, Benjamin Eugenio and Keim, Daniel A. and Saupe, Dietmar and Schreck, Tobias and Vranić, Dejan V.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5418">
    <dc:contributor>Vranić, Dejan V.</dc:contributor>
    <dcterms:issued>2004</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:13Z</dcterms:available>
    <dc:creator>Bustos Cárdenas, Benjamin Eugenio</dc:creator>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5418"/>
    <dcterms:abstract xml:lang="eng">Similarity search in 3D object databases is becoming an important problem in multimedia retrieval, with many practical applications. We investigate methods for improving the effectiveness in a retrieval system that implements multiple feature extraction algorithms to choose from. Our techniques are based on the entropy impurity measure, widely used in the context of decision trees. We propose a method for the a priori estimation of individual feature vector performance given a query. We then define two approaches that use this estimator to improve the retrieval effectiveness. Our experimental results show that significant improvements are achievable using these methods.</dcterms:abstract>
    <dc:creator>Vranić, Dejan V.</dc:creator>
    <dc:contributor>Bustos Cárdenas, Benjamin Eugenio</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:13Z</dc:date>
    <dcterms:bibliographicCitation>First publ. in: Proc. IEEE International Conference on Multimedia and Expo (ICME'04), 2004, vol. 2, pp. 1303-1306</dcterms:bibliographicCitation>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:title>Using Entropy Impurity for Improved 3D Object Similarity Search</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5418/1/ICME04.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5418/1/ICME04.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen