Publikation: Clustering Approaches for Gait Analysis within Neurological Disorders : A Narrative Review
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Background: The prevalence of neurological disorders is increasing, underscoring the importance of objective gait analysis to help clinicians identify specificdeficits. Never theless, existing technological solutions for gait analysis often suffer from impracticality in daily clinical use, including excessive cost, time constraints, and limited processing capabilities. Summary: This review aims to evaluate existing techniques for clustering patients with the same neurological disorder to assist clinicians in optimizing treatment options. A narrative review of thirteen relevant studies was conducted, characterizing their methods, and evaluating them against seven criteria. Additionally, the results are summarized in two comprehensive tables. Recent approaches show promise; however, our results indicate that, overall, only three approaches display medium or high process maturity, and only two show high clinical applicability. Key Messages: Our findings highlight the necessity for advancements, specifically regarding the use of markerless optical tracking systems, the optimization of experimental plans, and the external validation of results. This narrative review provides a comprehensive overview of existing clustering techniques, bridging the gap between instrumented gait analysis and its real-world clinical utility. We encourage researchers to use our findings and those from other medical fields to enhance clustering techniques for patients with neurological disorders, facilitating the identification of disparities within groups and their extent, ultimately improving patient outcomes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HUMMEL, Jonas, Michael SCHWENK, Daniel SEEBACHER, Philipp BARZYK, Joachim LIEPERT, Manuel STEIN, 2024. Clustering Approaches for Gait Analysis within Neurological Disorders : A Narrative Review. In: Digital Biomarkers. Karger. 2024, 8(1), S. 93-101. eISSN 2504-110X. Verfügbar unter: doi: 10.1159/000538270BibTex
@article{Hummel2024-05Clust-70579, year={2024}, doi={10.1159/000538270}, title={Clustering Approaches for Gait Analysis within Neurological Disorders : A Narrative Review}, number={1}, volume={8}, journal={Digital Biomarkers}, pages={93--101}, author={Hummel, Jonas and Schwenk, Michael and Seebacher, Daniel and Barzyk, Philipp and Liepert, Joachim and Stein, Manuel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70579"> <dc:creator>Seebacher, Daniel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Clustering Approaches for Gait Analysis within Neurological Disorders : A Narrative Review</dcterms:title> <dc:creator>Liepert, Joachim</dc:creator> <dc:contributor>Liepert, Joachim</dc:contributor> <dc:creator>Barzyk, Philipp</dc:creator> <dc:creator>Hummel, Jonas</dc:creator> <dc:contributor>Hummel, Jonas</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schwenk, Michael</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70579/4/Hummel_2-3tb44arrf7nv4.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-14T08:57:15Z</dc:date> <dc:contributor>Schwenk, Michael</dc:contributor> <dc:contributor>Seebacher, Daniel</dc:contributor> <dcterms:issued>2024-05</dcterms:issued> <dcterms:abstract>Background: The prevalence of neurological disorders is increasing, underscoring the importance of objective gait analysis to help clinicians identify specificdeficits. Never theless, existing technological solutions for gait analysis often suffer from impracticality in daily clinical use, including excessive cost, time constraints, and limited processing capabilities. Summary: This review aims to evaluate existing techniques for clustering patients with the same neurological disorder to assist clinicians in optimizing treatment options. A narrative review of thirteen relevant studies was conducted, characterizing their methods, and evaluating them against seven criteria. Additionally, the results are summarized in two comprehensive tables. Recent approaches show promise; however, our results indicate that, overall, only three approaches display medium or high process maturity, and only two show high clinical applicability. Key Messages: Our findings highlight the necessity for advancements, specifically regarding the use of markerless optical tracking systems, the optimization of experimental plans, and the external validation of results. This narrative review provides a comprehensive overview of existing clustering techniques, bridging the gap between instrumented gait analysis and its real-world clinical utility. We encourage researchers to use our findings and those from other medical fields to enhance clustering techniques for patients with neurological disorders, facilitating the identification of disparities within groups and their extent, ultimately improving patient outcomes.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-14T08:57:15Z</dcterms:available> <dc:contributor>Stein, Manuel</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70579"/> <dc:creator>Stein, Manuel</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70579/4/Hummel_2-3tb44arrf7nv4.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Barzyk, Philipp</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>