Publikation:

Clustering Approaches for Gait Analysis within Neurological Disorders : A Narrative Review

Lade...
Vorschaubild

Dateien

Hummel_2-3tb44arrf7nv4.pdf
Hummel_2-3tb44arrf7nv4.pdfGröße: 908.33 KBDownloads: 42

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Institutionen der Bundesrepublik Deutschland: V6KMU2110047

Projekt

SMARTGAIT: KI-basierte, interaktive Ganganalyse aus Smartphone-Videoaufnahmen zur Verstärkung der Gesundheitskompetenz in der Therapie neurologisch bedingter Gangstörungen
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Digital Biomarkers. Karger. 2024, 8(1), S. 93-101. eISSN 2504-110X. Verfügbar unter: doi: 10.1159/000538270

Zusammenfassung

Background: The prevalence of neurological disorders is increasing, underscoring the importance of objective gait analysis to help clinicians identify specificdeficits. Never theless, existing technological solutions for gait analysis often suffer from impracticality in daily clinical use, including excessive cost, time constraints, and limited processing capabilities. Summary: This review aims to evaluate existing techniques for clustering patients with the same neurological disorder to assist clinicians in optimizing treatment options. A narrative review of thirteen relevant studies was conducted, characterizing their methods, and evaluating them against seven criteria. Additionally, the results are summarized in two comprehensive tables. Recent approaches show promise; however, our results indicate that, overall, only three approaches display medium or high process maturity, and only two show high clinical applicability. Key Messages: Our findings highlight the necessity for advancements, specifically regarding the use of markerless optical tracking systems, the optimization of experimental plans, and the external validation of results. This narrative review provides a comprehensive overview of existing clustering techniques, bridging the gap between instrumented gait analysis and its real-world clinical utility. We encourage researchers to use our findings and those from other medical fields to enhance clustering techniques for patients with neurological disorders, facilitating the identification of disparities within groups and their extent, ultimately improving patient outcomes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
796 Sport

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HUMMEL, Jonas, Michael SCHWENK, Daniel SEEBACHER, Philipp BARZYK, Joachim LIEPERT, Manuel STEIN, 2024. Clustering Approaches for Gait Analysis within Neurological Disorders : A Narrative Review. In: Digital Biomarkers. Karger. 2024, 8(1), S. 93-101. eISSN 2504-110X. Verfügbar unter: doi: 10.1159/000538270
BibTex
@article{Hummel2024-05Clust-70579,
  year={2024},
  doi={10.1159/000538270},
  title={Clustering Approaches for Gait Analysis within Neurological Disorders : A Narrative Review},
  number={1},
  volume={8},
  journal={Digital Biomarkers},
  pages={93--101},
  author={Hummel, Jonas and Schwenk, Michael and Seebacher, Daniel and Barzyk, Philipp and Liepert, Joachim and Stein, Manuel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70579">
    <dc:creator>Seebacher, Daniel</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Clustering Approaches for Gait Analysis within Neurological Disorders : A Narrative Review</dcterms:title>
    <dc:creator>Liepert, Joachim</dc:creator>
    <dc:contributor>Liepert, Joachim</dc:contributor>
    <dc:creator>Barzyk, Philipp</dc:creator>
    <dc:creator>Hummel, Jonas</dc:creator>
    <dc:contributor>Hummel, Jonas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schwenk, Michael</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70579/4/Hummel_2-3tb44arrf7nv4.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-14T08:57:15Z</dc:date>
    <dc:contributor>Schwenk, Michael</dc:contributor>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dcterms:issued>2024-05</dcterms:issued>
    <dcterms:abstract>Background: The prevalence of neurological disorders is  increasing, underscoring the importance of objective gait  analysis to help clinicians identify specificdeficits. Never
theless, existing technological solutions for gait analysis often suffer from impracticality in daily clinical use, including excessive cost, time constraints, and limited processing capabilities. Summary: This review aims to evaluate existing techniques for clustering patients with the same neurological disorder to assist clinicians in optimizing treatment
 options. A narrative review of thirteen relevant studies was conducted, characterizing their methods, and evaluating them against seven criteria. Additionally, the results are
 summarized in two comprehensive tables. Recent approaches show promise; however, our results indicate that, overall, only three approaches display medium or high process maturity, and only two show high clinical applicability. Key Messages: Our findings highlight the necessity for advancements, specifically regarding the use of markerless
 optical tracking systems, the optimization of experimental plans, and the external validation of results. This narrative review provides a comprehensive overview of existing clustering techniques, bridging the gap between instrumented gait analysis and its real-world clinical utility. We encourage researchers to use our findings and those from other medical fields to enhance clustering techniques for patients with neurological disorders, facilitating the identification of disparities within groups and their extent, ultimately improving patient outcomes.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-14T08:57:15Z</dcterms:available>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70579"/>
    <dc:creator>Stein, Manuel</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70579/4/Hummel_2-3tb44arrf7nv4.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Barzyk, Philipp</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen