Publikation:

Visual Analysis of Spatio-Temporal Event Predictions : Investigating the Spread Dynamics of Invasive Species

Lade...
Vorschaubild

Dateien

Seebacher_2-3yfu8p5m8mmp8.pdf
Seebacher_2-3yfu8p5m8mmp8.pdfGröße: 2.02 MBDownloads: 159

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

BigGIS Prädiktive und präskriptive Geoinformationssysteme basierend auf hochdimensionalen geo-temporalen Datenstrukturen
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Big Data. Institute of Electrical and Electronics Engineers (IEEE). 2021, 7(3), pp. 497-509. ISSN 2372-2096. eISSN 2332-7790. Available under: doi: 10.1109/TBDATA.2018.2877352

Zusammenfassung

Invasive species are a major cause of ecological damage and commercial losses. A current problem spreading in North America and Europe is the vinegar fly Drosophila suzukii. Unlike other Drosophila, it infests non-rotting and healthy fruits and is therefore of concern to fruit growers, such as vintners. Consequently, large amounts of data about the occurrence of D. suzukii have been collected in recent years. However, there is a lack of interactive methods to investigate this data. We employ ensemble-based classification to predict areas susceptible to the occurrence of D. suzukii and bring them into a spatio-temporal context using maps and glyph-based visualizations. Following the information-seeking mantra, we provide a visual analysis system Drosophigator for spatio-temporal event predictions, enabling the investigation of the spread dynamics of invasive species. We demonstrate the usefulness of our approach in three use cases and an evaluation with more than 30 domain experts.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Data visualization, Big Data, Temperature measurement, Visualization, Europe, Insects, Industries

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SEEBACHER, Daniel, Johannes HÄUSSLER, Michael HUNDT, Manuel STEIN, Hannes MÜLLER, Ulrich ENGELKE, Daniel A. KEIM, 2021. Visual Analysis of Spatio-Temporal Event Predictions : Investigating the Spread Dynamics of Invasive Species. In: IEEE Transactions on Big Data. Institute of Electrical and Electronics Engineers (IEEE). 2021, 7(3), pp. 497-509. ISSN 2372-2096. eISSN 2332-7790. Available under: doi: 10.1109/TBDATA.2018.2877352
BibTex
@article{Seebacher2021Visua-44788,
  year={2021},
  doi={10.1109/TBDATA.2018.2877352},
  title={Visual Analysis of Spatio-Temporal Event Predictions : Investigating the Spread Dynamics of Invasive Species},
  number={3},
  volume={7},
  issn={2372-2096},
  journal={IEEE Transactions on Big Data},
  pages={497--509},
  author={Seebacher, Daniel and Häußler, Johannes and Hundt, Michael and Stein, Manuel and Müller, Hannes and Engelke, Ulrich and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44788">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-31T13:11:33Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Müller, Hannes</dc:creator>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44788/1/Seebacher_2-3yfu8p5m8mmp8.pdf"/>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:contributor>Müller, Hannes</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Hundt, Michael</dc:creator>
    <dc:contributor>Engelke, Ulrich</dc:contributor>
    <dc:contributor>Häußler, Johannes</dc:contributor>
    <dcterms:title>Visual Analysis of Spatio-Temporal Event Predictions : Investigating the Spread Dynamics of Invasive Species</dcterms:title>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Engelke, Ulrich</dc:creator>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dcterms:abstract xml:lang="eng">Invasive species are a major cause of ecological damage and commercial losses. A current problem spreading in North America and Europe is the vinegar fly Drosophila suzukii. Unlike other Drosophila, it infests non-rotting and healthy fruits and is therefore of concern to fruit growers, such as vintners.  Consequently, large amounts of data about the occurrence of D. suzukii have been collected in recent years. However, there is a lack of interactive methods to investigate this data. We employ ensemble-based classification to predict areas susceptible to the occurrence of D. suzukii and bring them into a spatio-temporal context using maps and glyph-based visualizations. Following the information-seeking mantra, we provide a visual analysis system Drosophigator for spatio-temporal event predictions, enabling the investigation of the spread dynamics of invasive species. We demonstrate the usefulness of our approach in three use cases and an evaluation with more than 30 domain experts.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44788/1/Seebacher_2-3yfu8p5m8mmp8.pdf"/>
    <dc:creator>Häußler, Johannes</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:contributor>Hundt, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-31T13:11:33Z</dcterms:available>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44788"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen