Publikation: Optimal Route Planning for Electric Vehicles in Large Networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the problem of routing electric vehicles (EV) in the most energy-efficient way within a road network taking into account both their limited energy supply as well as their ability to recuperate energy. Employing a classical result by Johnson and an observation about Dijkstra under nonconstant edge costs we obtain O(n log n+m) query time after a O(nm) preprocessing phase for any road network graph whose edge costs represent energy consumption or recuperation. If the energy recuperation is height induced in a very natural way, the preprocessing phase can even be omitted. We then adapt a technique for speeding-up (unconstrained) shortest path queries to our scenario to achieve a speed-up of another factor of around 20. Our results drastically improve upon the recent results in (Artmeier et al. 2010) and allow for route planning of EVs in an instant even on large networks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EISNER, Jochen, Stefan FUNKE, Sabine STORANDT, 2011. Optimal Route Planning for Electric Vehicles in Large Networks. The Twenty-Fifth AAAI Conference on Artificial Intelligence. San Francisco, CA, USA, 7. Aug. 2011 - 11. Aug. 2011. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. Menlo Park, CA, USA: AAAI Publications, 2011, pp. 1108-1113. ISBN 978-1-57735-509-0BibTex
@inproceedings{Eisner2011Optim-46634, year={2011}, title={Optimal Route Planning for Electric Vehicles in Large Networks}, url={https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3637}, isbn={978-1-57735-509-0}, publisher={AAAI Publications}, address={Menlo Park, CA, USA}, booktitle={Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence}, pages={1108--1113}, author={Eisner, Jochen and Funke, Stefan and Storandt, Sabine} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46634"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Storandt, Sabine</dc:contributor> <dc:creator>Storandt, Sabine</dc:creator> <dcterms:title>Optimal Route Planning for Electric Vehicles in Large Networks</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Funke, Stefan</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T08:52:20Z</dc:date> <dc:creator>Eisner, Jochen</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46634"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T08:52:20Z</dcterms:available> <dc:contributor>Funke, Stefan</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2011</dcterms:issued> <dcterms:abstract xml:lang="eng">We consider the problem of routing electric vehicles (EV) in the most energy-efficient way within a road network taking into account both their limited energy supply as well as their ability to recuperate energy. Employing a classical result by Johnson and an observation about Dijkstra under nonconstant edge costs we obtain O(n log n+m) query time after a O(nm) preprocessing phase for any road network graph whose edge costs represent energy consumption or recuperation. If the energy recuperation is height induced in a very natural way, the preprocessing phase can even be omitted. We then adapt a technique for speeding-up (unconstrained) shortest path queries to our scenario to achieve a speed-up of another factor of around 20. Our results drastically improve upon the recent results in (Artmeier et al. 2010) and allow for route planning of EVs in an instant even on large networks.</dcterms:abstract> <dc:contributor>Eisner, Jochen</dc:contributor> </rdf:Description> </rdf:RDF>