Publikation:

Evolutionäres Lernen von Regelsystemen

Lade...
Vorschaubild

Dateien

bsc_arbeit.pdf
bsc_arbeit.pdfGröße: 1.11 MBDownloads: 140

Datum

2005

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Evolutionary Learning of Rule-Systems
Publikationstyp
Bachelorarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Im Data Mining spielen Klassifikation eine große Rolle. Bei Klassifikation werden Regeln gebildet, mit denen unbekannte Daten anhand eines bezeichnenden Attributs eingeordnet werden. In dieser Bachelorarbeit wird ein Ansatz zum Lernen von Regelsystemen basierend auf evolutionären Algorithmen vorgestellt. Dabei wird insbesondere auf die genetischen Algorithmen eingegangen. Im Folgenden werden die beiden bekanntesten Vertreter genetischer Algorithmen zum Lernen von Regeln, der Michigan-Ansatz und der Pittsburgh-Ansatz, näher vorgestellt und miteinander verglichen. Dabei werden Parameter und Erweiterungen beim Pittsburgh-Ansatz vorgestellt und diskutiert. Die Grundlage dieser Arbeit bildet eine Implementierung eines Pittsburgh-Ansatzes im HADES Framework der Arbeitsgruppe Bioinformatik und Information Mining des Fachbereichs Informatik und Informationswissenschaft der Universität Konstanz.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Pittsburgh Ansatz, Pittsburgh Approach

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRAF, Sebastian, 2005. Evolutionäres Lernen von Regelsystemen [Bachelor thesis]
BibTex
@mastersthesis{Graf2005Evolu-6041,
  year={2005},
  title={Evolutionäres Lernen von Regelsystemen},
  author={Graf, Sebastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6041">
    <dc:format>application/pdf</dc:format>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6041/1/bsc_arbeit.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:56Z</dcterms:available>
    <dc:contributor>Graf, Sebastian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Graf, Sebastian</dc:creator>
    <dcterms:abstract xml:lang="deu">Im Data Mining spielen Klassifikation eine große Rolle. Bei Klassifikation werden Regeln gebildet, mit denen unbekannte Daten anhand eines bezeichnenden Attributs eingeordnet werden. In dieser Bachelorarbeit wird ein Ansatz zum Lernen von Regelsystemen basierend auf evolutionären Algorithmen vorgestellt. Dabei wird insbesondere auf die genetischen Algorithmen eingegangen. Im Folgenden werden die beiden bekanntesten Vertreter genetischer Algorithmen zum Lernen von Regeln, der Michigan-Ansatz und der Pittsburgh-Ansatz, näher vorgestellt und miteinander verglichen. Dabei werden Parameter und Erweiterungen beim Pittsburgh-Ansatz vorgestellt und diskutiert. Die Grundlage dieser Arbeit bildet eine Implementierung eines Pittsburgh-Ansatzes im HADES Framework der Arbeitsgruppe Bioinformatik und Information Mining des Fachbereichs Informatik und Informationswissenschaft der Universität Konstanz.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2005</dcterms:issued>
    <dcterms:title>Evolutionäres Lernen von Regelsystemen</dcterms:title>
    <dc:language>deu</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:alternative>Evolutionary Learning of Rule-Systems</dcterms:alternative>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6041/1/bsc_arbeit.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6041"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:56Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen